A mechanism for increased quinolinic acid formation following acute systemic immune stimulation

K. Saito, J. S. Crowley, S. P. Markey, M. P. Heyes

研究成果: Article査読

168 被引用数 (Scopus)

抄録

Mechanisms for increased levels of quinolinic acid (QUIN) following systemic immune stimulation were investigated. In gerbils, systemic administration of pokeweed mitogen (PWM) increased plasma and cerebrospinal fluid QUIN levels, while plasma kynurenic acid levels were decreased and cerebrospinal fluid kynurenic acid levels were unchanged. PWM also increased the QUIN concentrations of brain and systemic tissues. In slices of spleen, lung, liver, duodenum, and kidney, PWM caused marked increases in [13C6]QUIN formation from L-[13C6]tryptophan (but not from [13C6]anthranilic acid). PWM also increased QUIN excretion in the urine and enhanced the formation and excretion of [13C6]QUIN following an intraperitoneal injection of L-[13C6]tryptophan. Indoleamine-2,3- dioxygenase activity was increased in the brain, kidney, lung, spleen, and duodenum while hepatic L-tryptophan-2,3-dioxygenase activity was reduced, data consistent with in vitro L-kynurenine formation from L-tryptophan. Kynurenine-3-hydroxylase activity was increased in the duodenum, lung, and spleen, but not in the brain, kidney, or liver. Kynureninase activity was increased in the brain, lung, and duodenum, but not in the spleen, kidney, or liver. 3-Hydroxyanthranilate-3,4-dioxygenase activity was unchanged in the brain, lung, and liver. No change in kynurenine aminotransferase activity was observed in the brain or lung, while liver kynurenine aminotransferase activity was reduced. We conclude that increased activities of kynurenine pathway enzymes in various tissues following systemic immune stimulation, in conjunction with macrophage infiltration of the affected tissue, provide a mechanism to account for increased concentrations of QUIN.

本文言語English
ページ(範囲)15496-15503
ページ数8
ジャーナルJournal of Biological Chemistry
268
21
出版ステータスPublished - 1993
外部発表はい

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

フィンガープリント 「A mechanism for increased quinolinic acid formation following acute systemic immune stimulation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル