A preliminary Study on Seasonal features Understanding from Flyer Images Based on Machine Learning

Tomoko Tateyama, Takumi Miyamoto, Ken Orimoto, Shimpei Matsumoto

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

Today, the keyword assignment for advertisements from within digital leaflet images is mainly done manually, and there are problems such as huge amount of task and individual differences in keyword assignment. In this study, we focus on the analysis of flyer images of seasonal events and propose an image categorization method with seasonal information. Many flyer images of seasonal events have designs that represent the season of the event, such as maple leaves in fall and cherry blossoms in spring. We hypothesized that it is possible to classify flyer images by month or season, based on the differences in the designs for each season. For this hypothesis, this study classifies the collected flyer images based on feature detection and machine learning to classify the differences in design by season, and evaluates the classification results.

本文言語英語
ホスト出版物のタイトルProceedings - 2021 10th International Congress on Advanced Applied Informatics, IIAI-AAI 2021
出版社Institute of Electrical and Electronics Engineers Inc.
ページ668-673
ページ数6
ISBN(電子版)9781665424202
DOI
出版ステータス出版済み - 2021
外部発表はい
イベント10th International Congress on Advanced Applied Informatics, IIAI-AAI 2021 - Virtual, Online, 日本
継続期間: 11-07-202116-07-2021

出版物シリーズ

名前Proceedings - 2021 10th International Congress on Advanced Applied Informatics, IIAI-AAI 2021

会議

会議10th International Congress on Advanced Applied Informatics, IIAI-AAI 2021
国/地域日本
CityVirtual, Online
Period11-07-2116-07-21

All Science Journal Classification (ASJC) codes

  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • 情報システム
  • 情報システムおよび情報管理
  • 教育

フィンガープリント

「A preliminary Study on Seasonal features Understanding from Flyer Images Based on Machine Learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル