Accuracy validation of incident photon fluence on DQE for various measurement conditions and X-ray units

Tomonobu Haba, Shimpei Kondo, Daiki Hayashi, Shuji Koyama

研究成果: ジャーナルへの寄稿学術論文査読

4 被引用数 (Scopus)

抄録

Detective quantum efficiency (DQE) is widely used as a comprehensive metric for X-ray image evaluation in digital X-ray units. The incident photon fluence per air kerma (SNRin2) is necessary for calculating the DQE. The International Electrotechnical Commission (IEC) reports the SNR in2 under conditions of standard radiation quality, but this SNRin2 might not be accurate as calculated from the X-ray spectra emitted by an actual X-ray tube. In this study, we evaluated the error range of the SNRin2 presented by the IEC62220-1 report. We measured the X-ray spectra emitted by an X-ray tube under conditions of standard radiation quality of RQA5. The spectral photon fluence at each energy bin was multiplied by the photon energy and the mass energy absorption coefficient of air; then the air kerma spectrum was derived. The air kerma spectrum was integrated over the whole photon energy range to yield the total air kerma. The total photon number was then divided by the total air kerma. This value is the SNRin2. These calculations were performed for various measurement parameters and X-ray units. The percent difference between the calculated value and the standard value of RQA5 was up to 2.9 %. The error range was not negligibly small. Therefore, it is better to use the new SNRin2 of 30694 (1/(mm2 μGy)) than the current SNRin2 of 30174 (1/(mm2 μGy)).

本文言語英語
ページ(範囲)423-430
ページ数8
ジャーナルRadiological Physics and Technology
6
2
DOI
出版ステータス出版済み - 07-2013

All Science Journal Classification (ASJC) codes

  • 放射線
  • 理学療法、スポーツ療法とリハビリテーション
  • 放射線学、核医学およびイメージング

フィンガープリント

「Accuracy validation of incident photon fluence on DQE for various measurement conditions and X-ray units」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル