Accurate Hand Gesture Recognition Using Color and Depth Images with Modality-invariant Fusion

Masaya Okano, Jia Qing Liu, Tomoko Tateyama, Yutaro Iwamoto, Yen Wei Chen

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

3 被引用数 (Scopus)

抄録

Gesture recognition is actively used, and has been applied in various fields, including games and medicine. For accurate gesture recognition, multi-modal information with color and depth images has recently been used. In multimodal gesture recognition, the fusion of color and depth images is crucial. To date, early and late fusion approaches have been widely used for the fusion of color and depth images. However, the enhancement of performance is limited due to the gap between the modalities. In this study, we proposed a modality-invariant fusion approach to overcome the modality gap issue. We applied the proposed approach to a public and our private data set and verified its effectiveness.

本文言語英語
ホスト出版物のタイトルGCCE 2022 - 2022 IEEE 11th Global Conference on Consumer Electronics
出版社Institute of Electrical and Electronics Engineers Inc.
ページ645-648
ページ数4
ISBN(電子版)9781665492324
DOI
出版ステータス出版済み - 2022
イベント11th IEEE Global Conference on Consumer Electronics, GCCE 2022 - Osaka, 日本
継続期間: 18-10-202221-10-2022

出版物シリーズ

名前GCCE 2022 - 2022 IEEE 11th Global Conference on Consumer Electronics

会議

会議11th IEEE Global Conference on Consumer Electronics, GCCE 2022
国/地域日本
CityOsaka
Period18-10-2221-10-22

All Science Journal Classification (ASJC) codes

  • 信号処理
  • 情報システムおよび情報管理
  • 電子工学および電気工学
  • メディア記述
  • 器械工学
  • 社会心理学

フィンガープリント

「Accurate Hand Gesture Recognition Using Color and Depth Images with Modality-invariant Fusion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル