Attenuation of cardiac dysfunction by a PPAR-α agonist is associated with down-regulation of redox-regulated transcription factors

Sahoko Ichihara, Koji Obata, Yoshiji Yamada, Kohzo Nagata, Akiko Noda, Gaku Ichihara, Akira Yamada, Tomoko Kato, Hideo Izawa, Toyoaki Murohara, Mitsuhiro Yokota

研究成果: Article

91 引用 (Scopus)

抜粋

Peroxisome proliferator-activated receptor-α (PPAR-α) is a key regulator of lipid and glucose metabolism and is implicated in inflammation. We investigated the effects of the PPAR-α activator fenofibrate on, as well as the role of redox-regulated transcription factors, in the development of left ventricular (LV) hypertrophy and heart failure in Dahl salt-sensitive (DS) rats. DS rats were fed a high-salt diet and treated with either fenofibrate (30 or 50 mg/kg per day) or vehicle from 7 weeks of age. Fenofibrate inhibited the development of compensated hypertensive LV hypertrophy, attenuated the LV relaxation abnormality and systolic dysfunction, and improved the survival rate in DS rats. It also prevented a decrease in the ratio of reduced to oxidized glutathione and inhibited up-regulation of the DNA binding activities of the redox-regulated transcription factors NF-κB, AP-1, Egr-1, SP1, and Ets-1 induced in the left ventricle by the high-salt diet. Expression of target genes for these transcription factors, including those for adhesion molecules (VCAM-1, ICAM-1), cytokines (MCP-1), growth factors (TGF-β, PDGF-B), and osteopontin, was also increased by the high-salt diet in a manner sensitive to treatment with fenofibrate. Furthermore, the infiltration of macrophages and T lymphocytes into the left ventricle and the increase in the plasma concentration of C-reactive protein were inhibited by fenofibrate. The PPAR-α activator fenofibrate thus attenuated the progression of heart failure and improved the survival rate in this rat model. These effects were associated with inhibition of the inflammatory response and of activation of redox-regulated transcription factors in the left ventricle.

元の言語English
ページ(範囲)318-329
ページ数12
ジャーナルJournal of Molecular and Cellular Cardiology
41
発行部数2
DOI
出版物ステータスPublished - 08-2006

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Cardiology and Cardiovascular Medicine

フィンガープリント Attenuation of cardiac dysfunction by a PPAR-α agonist is associated with down-regulation of redox-regulated transcription factors' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用