TY - JOUR
T1 - Autism spectrum disorder-like behaviors induced by hyper-glutamatergic NMDA receptor signaling through hypo-serotonergic 5-HT1A receptor signaling in the prefrontal cortex in mice exposed to prenatal valproic acid
AU - Kurahashi, Hitomi
AU - Kunisawa, Kazuo
AU - Tanaka, Kenji F.
AU - Kubota, Hisayoshi
AU - Hasegawa, Masaya
AU - Miyachi, Mai
AU - Moriya, Yuka
AU - Hasegawa, Yoichi
AU - Nagai, Taku
AU - Saito, Kuniaki
AU - Nabeshima, Toshitaka
AU - Mouri, Akihiro
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024
Y1 - 2024
N2 - Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive behaviors, social deficits, and cognitive impairments. Maternal use of valproic acid (VPA) during pregnancy is associated with an increased risk of ASD in offspring. The prevailing pathophysiological hypothesis for ASD involves excitation/inhibition (E/I) imbalances and serotonergic dysfunction. Here, we investigated the association between glutamatergic-serotonergic neuronal interactions and ASD-like behaviors in mice exposed to prenatal VPA. Prenatal VPA exposure induced excessive repetitive self-grooming behavior and impaired social behavior and object recognition memory in young adult period. Prenatal VPA mice showed hyper-glutamatergic function (increase in basal extracellular glutamate levels and CaMKII phosphorylation) and hypo-serotonergic function (decrease in 5-hydroxyindoleacetic acid and stimulation-induced serotonin [5-HT] release, but an increase in 5-HT transporter expression) in the prefrontal cortex. Treatment with a low-affinity NMDA receptor antagonist (memantine), a selective 5-HT reuptake inhibitor (fluoxetine), and a 5-HT1A receptor agonist (tandospirone) attenuated both the increase in CaMKII phosphorylation and ASD-like behavior of prenatal VPA mice. Opto-genetic activation of the serotonergic neuronal system attenuated impairments in social behavior and object recognition memory in prenatal VPA mice. WAY-100635—a 5-HT1A receptor antagonist—antagonized the effect of fluoxetine on impaired social behavior and object recognition memory. These results suggest that E/I imbalance and ASD-like behavior are associated with hypo-serotonergic receptor signaling through 5-HT1A receptors in prenatal VPA mice.
AB - Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive behaviors, social deficits, and cognitive impairments. Maternal use of valproic acid (VPA) during pregnancy is associated with an increased risk of ASD in offspring. The prevailing pathophysiological hypothesis for ASD involves excitation/inhibition (E/I) imbalances and serotonergic dysfunction. Here, we investigated the association between glutamatergic-serotonergic neuronal interactions and ASD-like behaviors in mice exposed to prenatal VPA. Prenatal VPA exposure induced excessive repetitive self-grooming behavior and impaired social behavior and object recognition memory in young adult period. Prenatal VPA mice showed hyper-glutamatergic function (increase in basal extracellular glutamate levels and CaMKII phosphorylation) and hypo-serotonergic function (decrease in 5-hydroxyindoleacetic acid and stimulation-induced serotonin [5-HT] release, but an increase in 5-HT transporter expression) in the prefrontal cortex. Treatment with a low-affinity NMDA receptor antagonist (memantine), a selective 5-HT reuptake inhibitor (fluoxetine), and a 5-HT1A receptor agonist (tandospirone) attenuated both the increase in CaMKII phosphorylation and ASD-like behavior of prenatal VPA mice. Opto-genetic activation of the serotonergic neuronal system attenuated impairments in social behavior and object recognition memory in prenatal VPA mice. WAY-100635—a 5-HT1A receptor antagonist—antagonized the effect of fluoxetine on impaired social behavior and object recognition memory. These results suggest that E/I imbalance and ASD-like behavior are associated with hypo-serotonergic receptor signaling through 5-HT1A receptors in prenatal VPA mice.
UR - http://www.scopus.com/inward/record.url?scp=85206700697&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85206700697&partnerID=8YFLogxK
U2 - 10.1038/s41386-024-02004-z
DO - 10.1038/s41386-024-02004-z
M3 - Article
C2 - 39394255
AN - SCOPUS:85206700697
SN - 0893-133X
JO - Neuropsychopharmacology
JF - Neuropsychopharmacology
ER -