Automated classification of increased uptake regions in bone single-photon emission computed tomography/computed tomography images using three-dimensional deep convolutional neural network

Masakazu Tsujimoto, Atsushi Teramoto, Masakazu Dosho, Shingo Tanahashi, Ayami Fukushima, Seiichiro Ota, Yoshitaka Inui, Ryo Matsukiyo, Yuuki Obama, Hiroshi Toyama

研究成果: ジャーナルへの寄稿学術論文査読

1 被引用数 (Scopus)

抄録

Objective This study proposes an automated classification of benign and malignant in highly integrated regions in bone single-photon emission computed tomography/computed tomography (SPECT/CT) using a three-dimensional deep convolutional neural network (3D-DCNN). Methods We examined 100 regions of 35 patients with bone SPECT/CT classified as benign and malignant by other examinations and follow-ups. First, SPECT and CT images were extracted at the same coordinates in a cube, with a long side two times the diameter of a high concentration in SPECT images. Next, we inputted the extracted image to DCNN and obtained the probability of benignity and malignancy. Integrating the output from DCNN of each SPECT and CT image provided the overall result. To validate the efficacy of the proposed method, the malignancy of all images was assessed using the leave-one-out cross-validation method; besides, the overall classification accuracy was evaluated. Furthermore, we compared the analysis results of SPECT/CT, SPECT alone, CT alone, and whole-body planar scintigraphy in the highly integrated region of the same site. Results The extracted volume of interest was 50 benign and malignant regions, respectively. The overall classification accuracy of SPECT alone and CT alone was 73% and 68%, respectively, while that of the whole-body planar analysis at the same site was 74%. When SPECT/CT images were used, the overall classification accuracy was the highest (80%), while the classification accuracy of malignant and benign was 82 and 78%, respectively. Conclusions This study suggests that DCNN could be used for the direct classification of benign and malignant regions without extracting the features of SPECT/CT accumulation patterns.

本文言語英語
ページ(範囲)877-883
ページ数7
ジャーナルNuclear medicine communications
42
8
DOI
出版ステータス出版済み - 01-08-2021

All Science Journal Classification (ASJC) codes

  • 放射線学、核医学およびイメージング

フィンガープリント

「Automated classification of increased uptake regions in bone single-photon emission computed tomography/computed tomography images using three-dimensional deep convolutional neural network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル