Collagen-VI supplementation by cell transplantation improves muscle regeneration in Ullrich congenital muscular dystrophy model mice

Nana Takenaka-Ninagawa, Jinsol Kim, Mingming Zhao, Masae Sato, Tatsuya Jonouchi, Megumi Goto, Clémence Kiho Bourgeois Yoshioka, Rukia Ikeda, Aya Harada, Takahiko Sato, Makoto Ikeya, Akiyoshi Uezumi, Masashi Nakatani, Satoru Noguchi, Hidetoshi Sakurai

研究成果: ジャーナルへの寄稿学術論文査読

15 被引用数 (Scopus)

抄録

Background: Mesenchymal stromal cells (MSCs) function as supportive cells on skeletal muscle homeostasis through several secretory factors including type 6 collagen (COL6). Several mutations of COL6A1, 2, and 3 genes cause Ullrich congenital muscular dystrophy (UCMD). Skeletal muscle regeneration deficiency has been reported as a characteristic phenotype in muscle biopsy samples of human UCMD patients and UCMD model mice. However, little is known about the COL6-dependent mechanism for the occurrence and progression of the deficiency. The purpose of this study was to clarify the pathological mechanism of UCMD by supplementing COL6 through cell transplantation. Methods: To test whether COL6 supplementation has a therapeutic effect for UCMD, in vivo and in vitro experiments were conducted using four types of MSCs: (1) healthy donors derived-primary MSCs (pMSCs), (2) MSCs derived from healthy donor induced pluripotent stem cell (iMSCs), (3) COL6-knockout iMSCs (COL6KO-iMSCs), and (4) UCMD patient-derived iMSCs (UCMD-iMSCs). Results: All four MSC types could engraft for at least 12 weeks when transplanted into the tibialis anterior muscles of immunodeficient UCMD model (Col6a1KO) mice. COL6 protein was restored by the MSC transplantation if the MSCs were not COL6-deficient (types 1 and 2). Moreover, muscle regeneration and maturation in Col6a1KO mice were promoted with the transplantation of the COL6-producing MSCs only in the region supplemented with COL6. Skeletal muscle satellite cells derived from UCMD model mice (Col6a1KO-MuSCs) co-cultured with type 1 or 2 MSCs showed improved proliferation, differentiation, and maturation, whereas those co-cultured with type 3 or 4 MSCs did not. Conclusions: These findings indicate that COL6 supplementation improves muscle regeneration and maturation in UCMD model mice.

本文言語英語
論文番号446
ジャーナルStem Cell Research and Therapy
12
1
DOI
出版ステータス出版済み - 12-2021

All Science Journal Classification (ASJC) codes

  • 医学(その他)
  • 分子医療
  • 生化学、遺伝学、分子生物学(その他)
  • 細胞生物学

フィンガープリント

「Collagen-VI supplementation by cell transplantation improves muscle regeneration in Ullrich congenital muscular dystrophy model mice」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル