Compressed-sensing magnetic resonance image reconstruction using an iterative convolutional neural network approach

Fumio Hashimoto, Kibo Ote, Takenori Oida, Atsushi Teramoto, Yasuomi Ouchi

研究成果: Article

抜粋

Convolutional neural networks (CNNs) demonstrate excellent performance when employed to reconstruct the images obtained by compressed-sensing magnetic resonance imaging (CS-MRI). Our study aimed to enhance image quality by developing a novel iterative reconstruction approach that utilizes image-based CNNs and k-space correction to preserve original k-space data. In the proposed method, CNNs represent a priori information concerning image spaces. First, the CNNs are trained to map zero-filling images onto corresponding full-sampled images. Then, they recover the zero-filled part of the k-space data. Subsequently, k-space corrections, which involve the replacement of unfilled regions by original k-space data, are implemented to preserve the original k-space data. The above-mentioned processes are used iteratively. The performance of the proposed method was validated using a T2-weighted brain-image dataset, and experiments were conducted with several sampling masks. Finally, the proposed method was compared with other noniterative approaches to demonstrate its effectiveness. The aliasing artifacts in the reconstructed images obtained using the proposed approach were reduced compared to those using other state-of-the-art techniques. In addition, the quantitative results obtained in the form of the peak signal-to-noise ratio and structural similarity index demonstrated the effectiveness of the proposed method. The proposed CS-MRI method enhanced MR image quality with high-throughput examinations.

元の言語English
記事番号1902
ジャーナルApplied Sciences (Switzerland)
10
発行部数6
DOI
出版物ステータスPublished - 01-03-2020

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Instrumentation
  • Engineering(all)
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

フィンガープリント Compressed-sensing magnetic resonance image reconstruction using an iterative convolutional neural network approach' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用