Computer-Aided Diagnosis and Quantification of Cirrhotic Livers Based on Morphological Analysis and Machine Learning

Yen Wei Chen, Jie Luo, Chunhua Dong, Xianhua Han, Tomoko Tateyama, Akira Furukawa, Shuzo Kanasaki

研究成果: ジャーナルへの寄稿学術論文査読

20 被引用数 (Scopus)

抄録

It is widely known that morphological changes of the liver and the spleen occur during the clinical course of chronic liver diseases. In this paper, we proposed a morphological analysis method based on statistical shape models (SSMs) of the liver and spleen for computer-aided diagnosis and quantification of the chronic liver. We constructed not only the liver SSM but also the spleen SSM and a joint SSM of the liver and the spleen for a morphologic analysis of the cirrhotic liver in CT images. The effective modes are selected based on both its accumulation contribution rate and its correlation with doctor's opinions (stage labels). We then learn a mapping function between the selected mode and the stage of chronic liver. The mapping function was used for diagnosis and staging of chronic liver diseases.

本文言語英語
論文番号264809
ジャーナルComputational and Mathematical Methods in Medicine
2013
DOI
出版ステータス出版済み - 2013
外部発表はい

All Science Journal Classification (ASJC) codes

  • モデリングとシミュレーション
  • 生化学、遺伝学、分子生物学一般
  • 免疫学および微生物学一般
  • 応用数学

フィンガープリント

「Computer-Aided Diagnosis and Quantification of Cirrhotic Livers Based on Morphological Analysis and Machine Learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル