Cumulative Stay-time Representation for Electronic Health Records in Medical Event Time Prediction

Takayuki Katsuki, Kohei Miyaguchi, Akira Koseki, Toshiya Iwamori, Ryosuke Yanagiya, Atsushi Suzuki

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

We address the problem of predicting when a disease will develop, i.e., medical event time (MET), from a patient's electronic health record (EHR). The MET of non-communicable diseases like diabetes is highly correlated to cumulative health conditions, more specifically, how much time the patient spent with specific health conditions in the past. The common time-series representation is indirect in extracting such information from EHR because it focuses on detailed dependencies between values in successive observations, not cumulative information. We propose a novel data representation for EHR called cumulative stay-time representation (CTR), which directly models such cumulative health conditions. We derive a trainable construction of CTR based on neural networks that has the flexibility to fit the target data and scalability to handle high-dimensional EHR. Numerical experiments using synthetic and real-world datasets demonstrate that CTR alone achieves a high prediction performance, and it enhances the performance of existing models when combined with them.

本文言語英語
ホスト出版物のタイトルProceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI 2022
編集者Luc De Raedt, Luc De Raedt
出版社International Joint Conferences on Artificial Intelligence
ページ3861-3867
ページ数7
ISBN(電子版)9781956792003
DOI
出版ステータス出版済み - 2022
イベント31st International Joint Conference on Artificial Intelligence, IJCAI 2022 - Vienna, オーストリア
継続期間: 23-07-202229-07-2022

出版物シリーズ

名前IJCAI International Joint Conference on Artificial Intelligence
ISSN(印刷版)1045-0823

会議

会議31st International Joint Conference on Artificial Intelligence, IJCAI 2022
国/地域オーストリア
CityVienna
Period23-07-2229-07-22

All Science Journal Classification (ASJC) codes

  • 人工知能

フィンガープリント

「Cumulative Stay-time Representation for Electronic Health Records in Medical Event Time Prediction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル