Disruption of actin-binding domain-containing dystonin protein causes dystonia musculorum in mice

Masao Horie, Keisuke Watanabe, Asim K. Bepari, Jun ichiro Nashimoto, Kimi Araki, Hiromi Sano, Satomi Chiken, Atsushi Nambu, Katsuhiko Ono, Kazuhiro Ikenaka, Akiyoshi Kakita, Ken ichi Yamamura, Hirohide Takebayashi

研究成果: ジャーナルへの寄稿学術論文査読

28 被引用数 (Scopus)

抄録

The Dystonin gene (Dst) is responsible for dystonia musculorum (dt), an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. Dst-a isoforms, which contain actin-binding domains, are predominantly expressed in the nervous system. Although sensory neuron degeneration in the peripheral nervous system during the early postnatal stage is a well-recognised phenotype in dt, the histological characteristics and neuronal circuits in the central nervous system responsible for motor symptoms remain unclear. To analyse the causative neuronal networks and roles of Dst isoforms, we generated novel multipurpose Dst gene trap mice, in which actin-binding domain-containing isoforms are disrupted. Homozygous mice showed typical dt phenotypes with sensory degeneration and progressive motor symptoms. The gene trap allele (DstGt) encodes a mutant Dystonin-LacZ fusion protein, which is detectable by X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside) staining. We observed wide expression of the actin-binding domain-containing Dystonin isoforms in the central nervous system (CNS) and peripheral nervous system. This raised the possibility that not only secondary neuronal defects in the CNS subsequent to peripheral sensory degeneration but also cell-autonomous defects in the CNS contribute to the motor symptoms. Expression analysis of immediate early genes revealed decreased neuronal activity in the cerebellar-thalamo-striatal pathway in the homozygous brain, implying the involvement of this pathway in the dt phenotype. These novel DstGt mice showed that a loss-of-function mutation in the actin-binding domain-containing Dystonin isoforms led to typical dt phenotypes. Furthermore, this novel multipurpose DstGt allele offers a unique tool for analysing the causative neuronal networks involved in the dt phenotype. The Dystonin gene is responsible for dystonia musculorum, an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. We generated novel multipurpose Dystonin gene trap mice, in which actin-binding domain-containing isoforms are disrupted. Homozygous mice showed typical dystonia musculorum phenotypes, which are also confirmed by the electromyogram analysis.

本文言語英語
ページ(範囲)3458-3471
ページ数14
ジャーナルEuropean Journal of Neuroscience
40
10
DOI
出版ステータス出版済み - 01-11-2014
外部発表はい

All Science Journal Classification (ASJC) codes

  • 神経科学(全般)

フィンガープリント

「Disruption of actin-binding domain-containing dystonin protein causes dystonia musculorum in mice」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル