DSCAM regulates delamination of neurons in the developing midbrain

Nariko Arimura, Mako Okada, Shinichiro Taya, Ken Ichi Dewa, Akiko Tsuzuki, Hirotomo Uetake, Satoshi Miyashita, Koichi Hashizume, Kazumi Shimaoka, Saki Egusa, Tomoki Nishioka, Yuchio Yanagawa, Kazuhiro Yamakawa, Yukiko U. Inoue, Takayoshi Inoue, Kozo Kaibuchi, Mikio Hoshino

研究成果: ジャーナルへの寄稿学術論文査読

20 被引用数 (Scopus)

抄録

For normal neurogenesis and circuit formation, delamination of differentiating neurons from the proliferative zone must be precisely controlled; however, the regulatory mechanisms underlying cell attachment are poorly understood. Here, we show that Down syndrome cell adhesion molecule (DSCAM) controls neuronal delamination by local suppression of the RapGEF2-Rap1-N-cadherin cascade at the apical endfeet in the dorsal midbrain. Dscam transcripts were expressed in differentiating neurons, and DSCAM protein accumulated at the distal part of the apical endfeet. Cre-loxP-based neuronal labeling revealed that Dscam knockdown impaired endfeet detachment from ventricles. DSCAM associated with RapGEF2 to inactivate Rap1, whose activity is required for membrane localization of N-cadherin. Correspondingly, Dscam knockdown increased N-cadherin localization and ventricular attachment area at the endfeet. Furthermore, excessive endfeet attachment by Dscam knockdown was restored by co-knockdown of RapGEF2 or N-cadherin. Our findings shed light on the molecular mechanism that regulates a critical step in early neuronal development.

本文言語英語
論文番号eaba1693
ジャーナルScience advances
6
36
DOI
出版ステータス出版済み - 09-2020

All Science Journal Classification (ASJC) codes

  • 一般

フィンガープリント

「DSCAM regulates delamination of neurons in the developing midbrain」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル