TY - JOUR
T1 - Effect of eicosapentaenoic acid and pitavastatin on electrophysiology and anticoagulant gene expression in mice with rapid atrial pacing
AU - Tong, Maoqing
AU - Wang, Jiewen
AU - Ji, Yunxin
AU - Chen, Xiaomin
AU - Wang, Jieru
AU - Wang, Shuangshuang
AU - Ruan, Liemin
AU - Cui, Hanbin
AU - Zhou, Ying
AU - Zhang, Qingyu
AU - Watanabe, Eiichi
N1 - Publisher Copyright:
© 2017, Spandidos Publications. All rights reserved.
PY - 2017
Y1 - 2017
N2 - Atrial remodeling is considered to be any persistent change in atrial structure or function, and is responsible for the development and perpetuation of atrial fibrillation (AF). Oxidative stress and intracellular pH regulation may also be linked to AF; however it remains unclear whether eicosapentaenoic acid (EPA) or statins have beneficial therapeutic effects. The aim of the present study was to investigate the effects of EPA and pitavastatin on the electrophysiology of and gene expressions in mice with rapidly-paced atria. Mice were treated with EPA (10 mg/g/day) or pitavastatin (30 ng/g/day) for 6 weeks, following which AF was simulated by 8-h atrial pacing at 1,800 bpm. The atrial electrophysiological properties and the expression of cardiac genes, potassium voltage-gated channel subfamily A member 5 (Kcna5), Kcn subfamily D member 2 (Kcnd2), Kv channel-interacting protein 2 (KChIP2), solute carrier family 9 member A1, thrombomodulin (TM) and tissue factor pathway inhibitor (TFPI) were examined using reverse transcription-quantitative polymerase chain reaction. In control mice, significant atrial electrical remodeling was observed (P<0.05); however, treatment with either EPA or pitavastatin ameliorated these electrophysiological changes (P>0.05). mRNA levels of Kcnd2, KChIP2 and Kcna5 were significantly upregulated in control mice (P<0.05), whereas treatment with EPA or pitavastatin attenuated this upregulation (P>0.05). Administration of pitavastatin significantly reduced the downregulation of both TFPI andTM (P<0.05). EPA treatment attenuated the TFPI downregulation compared with control mice (P>0.05), however no significant effect onTM expression was observed. In addition, both EPA (P>0.05) and pitavastatin (P<0.05) suppressed the overexpression of endothelial nitric oxide synthase. This was also exhibited in Ras-related C3 botulinum toxin substrate 1 genes (P<0.01 for both treatments). In conclusion, the results of the present study suggested that EPA and pitavastatin are able to prevent atrial electrical remodeling, thrombotic states and oxidative stress in rapidly-paced murine atria.
AB - Atrial remodeling is considered to be any persistent change in atrial structure or function, and is responsible for the development and perpetuation of atrial fibrillation (AF). Oxidative stress and intracellular pH regulation may also be linked to AF; however it remains unclear whether eicosapentaenoic acid (EPA) or statins have beneficial therapeutic effects. The aim of the present study was to investigate the effects of EPA and pitavastatin on the electrophysiology of and gene expressions in mice with rapidly-paced atria. Mice were treated with EPA (10 mg/g/day) or pitavastatin (30 ng/g/day) for 6 weeks, following which AF was simulated by 8-h atrial pacing at 1,800 bpm. The atrial electrophysiological properties and the expression of cardiac genes, potassium voltage-gated channel subfamily A member 5 (Kcna5), Kcn subfamily D member 2 (Kcnd2), Kv channel-interacting protein 2 (KChIP2), solute carrier family 9 member A1, thrombomodulin (TM) and tissue factor pathway inhibitor (TFPI) were examined using reverse transcription-quantitative polymerase chain reaction. In control mice, significant atrial electrical remodeling was observed (P<0.05); however, treatment with either EPA or pitavastatin ameliorated these electrophysiological changes (P>0.05). mRNA levels of Kcnd2, KChIP2 and Kcna5 were significantly upregulated in control mice (P<0.05), whereas treatment with EPA or pitavastatin attenuated this upregulation (P>0.05). Administration of pitavastatin significantly reduced the downregulation of both TFPI andTM (P<0.05). EPA treatment attenuated the TFPI downregulation compared with control mice (P>0.05), however no significant effect onTM expression was observed. In addition, both EPA (P>0.05) and pitavastatin (P<0.05) suppressed the overexpression of endothelial nitric oxide synthase. This was also exhibited in Ras-related C3 botulinum toxin substrate 1 genes (P<0.01 for both treatments). In conclusion, the results of the present study suggested that EPA and pitavastatin are able to prevent atrial electrical remodeling, thrombotic states and oxidative stress in rapidly-paced murine atria.
UR - http://www.scopus.com/inward/record.url?scp=85026626859&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85026626859&partnerID=8YFLogxK
U2 - 10.3892/etm.2017.4741
DO - 10.3892/etm.2017.4741
M3 - Article
AN - SCOPUS:85026626859
SN - 1792-0981
VL - 14
SP - 2310
EP - 2316
JO - Experimental and Therapeutic Medicine
JF - Experimental and Therapeutic Medicine
IS - 3
ER -