Free-energy-based reinforcement learning in a partially observable environment

Makoto Otsuka, Junichiro Yoshimoto, Kenji Doya

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

10 被引用数 (Scopus)

抄録

Free-energy-based reinforcement learning (FERL) can handle Markov decision processes (MDPs) with high-dimensional state spaces by approximating the state-action value function with the negative equilibrium free energy of a restricted Boltzmann machine (RBM). In this study, we extend the FERL framework to handle partially observable MDPs (POMDPs) by incorporating a recurrent neural network that learns a memory representation sufficient for predicting future observations and rewards. We demonstrate that the proposed method successfully solves POMDPs with high-dimensional observations without any prior knowledge of the environmental hidden states and dynamics. After learning, task structures are implicitly represented in the distributed activation patterns of hidden nodes of the RBM.

本文言語英語
ホスト出版物のタイトルProceedings of the 18th European Symposium on Artificial Neural Networks - Computational Intelligence and Machine Learning, ESANN 2010
ページ541-546
ページ数6
出版ステータス出版済み - 2010
外部発表はい
イベント18th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2010 - Bruges, ベルギー
継続期間: 28-04-201030-04-2010

出版物シリーズ

名前Proceedings of the 18th European Symposium on Artificial Neural Networks - Computational Intelligence and Machine Learning, ESANN 2010

会議

会議18th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2010
国/地域ベルギー
CityBruges
Period28-04-1030-04-10

All Science Journal Classification (ASJC) codes

  • 人工知能
  • 情報システム

フィンガープリント

「Free-energy-based reinforcement learning in a partially observable environment」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル