TY - JOUR
T1 - Gastric inhibitory polypeptide receptor antagonism suppresses intramuscular adipose tissue accumulation and ameliorates sarcopenia
AU - Takahashi, Yuya
AU - Fujita, Hiroki
AU - Seino, Yusuke
AU - Hattori, Satoko
AU - Hidaka, Shihomi
AU - Miyakawa, Tsuyoshi
AU - Suzuki, Atsushi
AU - Waki, Hironori
AU - Yabe, Daisuke
AU - Seino, Yutaka
AU - Yamada, Yuichiro
N1 - Publisher Copyright:
© 2023 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by Wiley Periodicals LLC.
PY - 2023/12
Y1 - 2023/12
N2 - Background: Intramuscular adipose tissue (IMAT) formation derived from muscle fibro-adipogenic progenitors (FAPs) has been recognized as a pathological feature of sarcopenia. This study aimed to explore whether genetic and pharmacological gastric inhibitory polypeptide (GIP) receptor antagonism suppresses IMAT accumulation and ameliorates sarcopenia in mice. Methods: Whole body composition, grip strength, skeletal muscle weight, tibialis anterior (TA) muscle fibre cross-sectional area (CSA) and TA muscle IMAT area were measured in young and aged male C57BL/6 strain GIP receptor (Gipr)-knockout (Gipr−/−) and wild-type (Gipr+/+) mice. FAPs isolated from lower limb muscles of 12-week-old Gipr+/+ mice were cultured with GIP, and their differentiation into mature adipocytes was examined. Furthermore, TA muscle IMAT area and fibre CSA were measured in untreated Gipr−/− mice and GIP receptor antagonist-treated Gipr+/+ mice after glycerol injection into the TA muscles. Results: Body composition analysis revealed that 104-week-old Gipr−/− mice had a greater proportion of lean tissue mass (73.7 ± 1.2% vs. 66.5 ± 2.7%, P < 0.05 vs. 104-week-old Gipr+/+ mice) and less adipose tissue mass (13.1 ± 1.3% vs. 19.4 ± 2.6%, P < 0.05 vs. 104-week-old Gipr+/+ mice). Eighty-four-week-old Gipr−/− mice exhibited increases in grip strength (P < 0.05), weights of TA (P < 0.05), soleus (P < 0.01), gastrocnemius (P < 0.05) and quadriceps femoris (P < 0.01) muscles, and average TA muscle fibre CSA (P < 0.05) along with a reduction in TA muscle IMAT area assessed by the number of perilipin-positive cells (P < 0.0001) compared with 84-week-old Gipr+/+ mice. Oil Red O staining analysis revealed 1.6- and 1.7-fold increased adipogenesis in muscle FAPs cultured with 10 and 100 nM of GIP (P < 0.01 and P < 0.001 vs. 0 nM of GIP, respectively). Furthermore, both untreated Gipr−/− mice and GIP receptor antagonist-treated Gipr+/+ mice for 14 days after glycerol injection into the TA muscles at 12 weeks of age showed reduced TA muscle IMAT area (1.39 ± 0.38% and 2.65 ± 0.36% vs. 6.54 ± 1.30%, P < 0.001 and P < 0.01 vs. untreated Gipr+/+ mice, respectively) and increased average TA muscle fibre CSA (P < 0.01 and P < 0.05 vs. untreated Gipr+/+ mice, respectively). Conclusions: GIP promotes the differentiation of muscle FAPs into adipocytes and its receptor antagonism suppresses IMAT accumulation and promotes muscle regeneration. Pharmacological GIP receptor antagonism may serve as a novel therapeutic approach for sarcopenia.
AB - Background: Intramuscular adipose tissue (IMAT) formation derived from muscle fibro-adipogenic progenitors (FAPs) has been recognized as a pathological feature of sarcopenia. This study aimed to explore whether genetic and pharmacological gastric inhibitory polypeptide (GIP) receptor antagonism suppresses IMAT accumulation and ameliorates sarcopenia in mice. Methods: Whole body composition, grip strength, skeletal muscle weight, tibialis anterior (TA) muscle fibre cross-sectional area (CSA) and TA muscle IMAT area were measured in young and aged male C57BL/6 strain GIP receptor (Gipr)-knockout (Gipr−/−) and wild-type (Gipr+/+) mice. FAPs isolated from lower limb muscles of 12-week-old Gipr+/+ mice were cultured with GIP, and their differentiation into mature adipocytes was examined. Furthermore, TA muscle IMAT area and fibre CSA were measured in untreated Gipr−/− mice and GIP receptor antagonist-treated Gipr+/+ mice after glycerol injection into the TA muscles. Results: Body composition analysis revealed that 104-week-old Gipr−/− mice had a greater proportion of lean tissue mass (73.7 ± 1.2% vs. 66.5 ± 2.7%, P < 0.05 vs. 104-week-old Gipr+/+ mice) and less adipose tissue mass (13.1 ± 1.3% vs. 19.4 ± 2.6%, P < 0.05 vs. 104-week-old Gipr+/+ mice). Eighty-four-week-old Gipr−/− mice exhibited increases in grip strength (P < 0.05), weights of TA (P < 0.05), soleus (P < 0.01), gastrocnemius (P < 0.05) and quadriceps femoris (P < 0.01) muscles, and average TA muscle fibre CSA (P < 0.05) along with a reduction in TA muscle IMAT area assessed by the number of perilipin-positive cells (P < 0.0001) compared with 84-week-old Gipr+/+ mice. Oil Red O staining analysis revealed 1.6- and 1.7-fold increased adipogenesis in muscle FAPs cultured with 10 and 100 nM of GIP (P < 0.01 and P < 0.001 vs. 0 nM of GIP, respectively). Furthermore, both untreated Gipr−/− mice and GIP receptor antagonist-treated Gipr+/+ mice for 14 days after glycerol injection into the TA muscles at 12 weeks of age showed reduced TA muscle IMAT area (1.39 ± 0.38% and 2.65 ± 0.36% vs. 6.54 ± 1.30%, P < 0.001 and P < 0.01 vs. untreated Gipr+/+ mice, respectively) and increased average TA muscle fibre CSA (P < 0.01 and P < 0.05 vs. untreated Gipr+/+ mice, respectively). Conclusions: GIP promotes the differentiation of muscle FAPs into adipocytes and its receptor antagonism suppresses IMAT accumulation and promotes muscle regeneration. Pharmacological GIP receptor antagonism may serve as a novel therapeutic approach for sarcopenia.
UR - http://www.scopus.com/inward/record.url?scp=85174926064&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85174926064&partnerID=8YFLogxK
U2 - 10.1002/jcsm.13346
DO - 10.1002/jcsm.13346
M3 - Article
C2 - 37897141
AN - SCOPUS:85174926064
SN - 2190-5991
VL - 14
SP - 2703
EP - 2718
JO - Journal of Cachexia, Sarcopenia and Muscle
JF - Journal of Cachexia, Sarcopenia and Muscle
IS - 6
ER -