TY - JOUR
T1 - Genomic patterns and characterizations of chromosomally-encoded mcr-1 in Escherichia coli populations
AU - Shen, Cong
AU - Zhong, Lan Lan
AU - Ma, Furong
AU - El-Sayed Ahmed, Mohamed Abd El Gawad
AU - Doi, Yohei
AU - Zhang, Guili
AU - Liu, Yang
AU - Huang, Songyin
AU - Li, Hong Yu
AU - Zhang, Liyan
AU - Liao, Kang
AU - Xia, Yong
AU - Dai, Min
AU - Yan, Bin
AU - Tian, Guo Bao
N1 - Funding Information:
This work was supported by the National Natural Science Foundation of China (Grant Numbers 81830103, 81722030), China Postdoctoral Science Foundation (BX20200394), National Key Research and Development Program (Grant Number 2017ZX10302301), Guangdong Natural Science Foundation (Grant Number 2017A030306012), Project of high-level health teams of Zhuhai at 2018 (The Innovation Team for Antimicrobial Resistance and Clinical Infection), 111 Project (Grant Number B12003), Open project of Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education (Grant Number 2020kfkt04, 2020kfkt07), Innovative Development Program for Outstanding Graduate Students (No. 19ykyj557), and The Science and Technology Planning Project of Guangdong (2017A020215017).
PY - 2020/12
Y1 - 2020/12
N2 - The emergence and transmission of the mobile colistin resistance gene (mcr-1) threatened the extensive use of polymyxin antimicrobials. Accumulated evidence showed that the banning of colistin additive in livestock feed efficiently reduce mcr-1 prevalence, not only in animals but also in humans and environments. However, our previous study has revealed that a small proportion of Escherichia coli could continually carry chromosomally-encoded mcr-1. The chromosomally-encoded events, indicated the existence of stabilized heritage of mcr-1 and revealed a potential threat in the antimicrobial stewardship interventions, are yet to be investigated. In this study, we systematically investigated the genetic basis of chromosomally-encoded mcr-1 in prevalence and potential mechanisms of lineage, plasmid, insertion sequence, and phage. Our results demonstrated that the emergence of chromosomally-encoded mcr-1 could originate from multiple mechanisms, but mainly derived through the recombination of ISApl1/Tn6330. We reported a specific transmission mechanism, which is a phage-like region without lysogenic components, could associate with the emergence and stabilization of chromosomally-encoded mcr-1. These results highlighted the potential origin and risks of chromosomally-encoded mcr-1, which could be a heritable repository and thrive again when confronted with new selective pressures. To the best of our knowledge, this is the first study to systematically reveal the genomic basis of chromosomally-encoded mcr-1, and report a specific transmission pattern involved in phage-like region. Overall, we demonstrate the origin mechanisms and risks of chromosomally-encoded mcr-1. It highlights the need of public attention on chromosome-encoded mcr-1 to prevent from its reemergence.
AB - The emergence and transmission of the mobile colistin resistance gene (mcr-1) threatened the extensive use of polymyxin antimicrobials. Accumulated evidence showed that the banning of colistin additive in livestock feed efficiently reduce mcr-1 prevalence, not only in animals but also in humans and environments. However, our previous study has revealed that a small proportion of Escherichia coli could continually carry chromosomally-encoded mcr-1. The chromosomally-encoded events, indicated the existence of stabilized heritage of mcr-1 and revealed a potential threat in the antimicrobial stewardship interventions, are yet to be investigated. In this study, we systematically investigated the genetic basis of chromosomally-encoded mcr-1 in prevalence and potential mechanisms of lineage, plasmid, insertion sequence, and phage. Our results demonstrated that the emergence of chromosomally-encoded mcr-1 could originate from multiple mechanisms, but mainly derived through the recombination of ISApl1/Tn6330. We reported a specific transmission mechanism, which is a phage-like region without lysogenic components, could associate with the emergence and stabilization of chromosomally-encoded mcr-1. These results highlighted the potential origin and risks of chromosomally-encoded mcr-1, which could be a heritable repository and thrive again when confronted with new selective pressures. To the best of our knowledge, this is the first study to systematically reveal the genomic basis of chromosomally-encoded mcr-1, and report a specific transmission pattern involved in phage-like region. Overall, we demonstrate the origin mechanisms and risks of chromosomally-encoded mcr-1. It highlights the need of public attention on chromosome-encoded mcr-1 to prevent from its reemergence.
UR - http://www.scopus.com/inward/record.url?scp=85096853310&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096853310&partnerID=8YFLogxK
U2 - 10.1186/s13099-020-00393-2
DO - 10.1186/s13099-020-00393-2
M3 - Article
AN - SCOPUS:85096853310
VL - 12
JO - Gut Pathogens
JF - Gut Pathogens
SN - 1757-4749
IS - 1
M1 - 55
ER -