TY - JOUR
T1 - Glu-47, which forms a salt bridge between neurophysin-II and arginine vasopressin, is deleted in patients with familial central diabetes insipidus
AU - Yuasa, Hiromitsu
AU - Ito, Masafumi
AU - Nagasaki, Hiroshi
AU - Oiso, Yutaka
AU - Miyamoto, Shigeki
AU - Sasaki, Nozomu
AU - Saito, Hidehiko
PY - 1993/9
Y1 - 1993/9
N2 - The arginine vasopressin (AVP) gene was sequenced in a pedigree with familial central diabetes insipidus (DI). When polymerase chain reaction-amplified DNAs from affected subjects were subjected to polyacrylamide gel electrophoresis, fragments including exon 2 displayed two additional, slower migrating bands. These extra bands represented DNA heteroduplexes, indicating that there was a deletion or insertion mutation in exon 2. As the region with such a mutation was identified by direct sequence analysis, polymerase chain reaction-amplified fragments including the region were subcloned and sequenced. A 3-basepair deletion (AGG) out of two consecutive AGG sequences (nucleotides 1824-1829) was identified in one of two alleles. The cosegregation of the mutation with the DI phenotype in the family was confirmed by restriction enzyme analyses. This mutation should yield an abnormal AVP precursor lacking Glu47 in its neurophysin-II (NP) moiety. Since Glu47 is essential for NP molecules to form a salt bridge with AVP, it is very likely that the function of NP as a carrier protein for AVP would be impaired. We suggest that AVP would undergo accelerated proteolytic degradation, and this mechanism would be involved in the pathogenesis of DI in this pedigree.
AB - The arginine vasopressin (AVP) gene was sequenced in a pedigree with familial central diabetes insipidus (DI). When polymerase chain reaction-amplified DNAs from affected subjects were subjected to polyacrylamide gel electrophoresis, fragments including exon 2 displayed two additional, slower migrating bands. These extra bands represented DNA heteroduplexes, indicating that there was a deletion or insertion mutation in exon 2. As the region with such a mutation was identified by direct sequence analysis, polymerase chain reaction-amplified fragments including the region were subcloned and sequenced. A 3-basepair deletion (AGG) out of two consecutive AGG sequences (nucleotides 1824-1829) was identified in one of two alleles. The cosegregation of the mutation with the DI phenotype in the family was confirmed by restriction enzyme analyses. This mutation should yield an abnormal AVP precursor lacking Glu47 in its neurophysin-II (NP) moiety. Since Glu47 is essential for NP molecules to form a salt bridge with AVP, it is very likely that the function of NP as a carrier protein for AVP would be impaired. We suggest that AVP would undergo accelerated proteolytic degradation, and this mechanism would be involved in the pathogenesis of DI in this pedigree.
UR - http://www.scopus.com/inward/record.url?scp=0027381580&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027381580&partnerID=8YFLogxK
M3 - Article
C2 - 8103767
AN - SCOPUS:0027381580
SN - 0021-972X
VL - 77
SP - 600
EP - 604
JO - Journal of Clinical Endocrinology and Metabolism
JF - Journal of Clinical Endocrinology and Metabolism
IS - 3
ER -