Hierarchical model selection for NGnet based on variational Bayes inference

Junichiro Yoshimoto, Shin Ishii, Masa Aki Sato

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

This article presents a variational Bayes inference for normalized Gaussian network, which is a kind of mixture models of local experts. In order to search for the optimal model structure, we develop a hierarchical model selection method. The performance of our method is evaluated by using function approximation and nonlinear dynamical system identification problems. Our method achieved better performance than existing methods.

本文言語英語
ホスト出版物のタイトルArtificial Neural Networks, ICANN 2002 - International Conference, Proceedings
編集者Jose R. Dorronsoro, Jose R. Dorronsoro
出版社Springer Verlag
ページ661-666
ページ数6
ISBN(印刷版)9783540440741
DOI
出版ステータス出版済み - 2002
外部発表はい
イベント2002 International Conference on Artificial Neural Networks, ICANN 2002 - Madrid, スペイン
継続期間: 28-08-200230-08-2002

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2415 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

会議

会議2002 International Conference on Artificial Neural Networks, ICANN 2002
国/地域スペイン
CityMadrid
Period28-08-0230-08-02

All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータサイエンス一般

フィンガープリント

「Hierarchical model selection for NGnet based on variational Bayes inference」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル