TY - JOUR
T1 - Identification and characterization of CCAAT enhancer-binding protein (C/EBP) as a transcriptional activator for Epstein-Barr virus oncogene latent membrane protein 1
AU - Noda, Chieko
AU - Murata, Takayuki
AU - Kanda, Teru
AU - Yoshiyama, Hironori
AU - Sugimoto, Atsuko
AU - Kawashima, Daisuke
AU - Saito, Shinichi
AU - Isomura, Hiroki
AU - Tsurumi, Tatsuya
PY - 2011/12/9
Y1 - 2011/12/9
N2 - Epstein-Barr virus LMP1, a major oncoprotein expressed in latent infection, is critical for primary B cell transformation, functioning as a TNFR family member by aggregation in the plasma membrane resulting in constitutive activation of cellular signals, such as NF-κB, MAPK, JAK/STAT, and AKT. Although transcription of LMP1 in latent type III cells is generally under the control of the viral coactivator EBNA2, little is known about EBNA2-independent LMP1 expression in type II latency. We thus screened a cDNA library for factors that can activate the LMP1 promoter in an EBNA2-independent manner, using a reporter assay system. So far, we have screened >20,000 clones, and here identified C/EBPε as a new transcriptional activator. Exogenous expression of C/EBPα, -β, or -ε efficiently augmented LMP1 mRNA and protein levels in EBV-positive cell lines, whereas other members of the C/EBP family exhibited modest or little activity. It has been demonstrated that LMP1 gene transcription depends on two promoter regions: proximal (ED-L1) and distal (TR-L1). Interestingly, although we first used the proximal promoter for screening, we found that C/EBP increased transcription from both promoters in latent EBV-positive cells. Mutagenesis in reporter assays and EMSA identified only one functional C/EBP binding site, through which activation of both proximal and distal promoters is mediated. Introduction of point mutations into the identified C/EBP site in EBV-BAC caused reduced LMP1 transcription from both LMP1 promoters in epithelial cells. In conclusion, C/EBP is a newly identified transcriptional activator of the LMP1 gene, independent of the EBNA2 coactivator.
AB - Epstein-Barr virus LMP1, a major oncoprotein expressed in latent infection, is critical for primary B cell transformation, functioning as a TNFR family member by aggregation in the plasma membrane resulting in constitutive activation of cellular signals, such as NF-κB, MAPK, JAK/STAT, and AKT. Although transcription of LMP1 in latent type III cells is generally under the control of the viral coactivator EBNA2, little is known about EBNA2-independent LMP1 expression in type II latency. We thus screened a cDNA library for factors that can activate the LMP1 promoter in an EBNA2-independent manner, using a reporter assay system. So far, we have screened >20,000 clones, and here identified C/EBPε as a new transcriptional activator. Exogenous expression of C/EBPα, -β, or -ε efficiently augmented LMP1 mRNA and protein levels in EBV-positive cell lines, whereas other members of the C/EBP family exhibited modest or little activity. It has been demonstrated that LMP1 gene transcription depends on two promoter regions: proximal (ED-L1) and distal (TR-L1). Interestingly, although we first used the proximal promoter for screening, we found that C/EBP increased transcription from both promoters in latent EBV-positive cells. Mutagenesis in reporter assays and EMSA identified only one functional C/EBP binding site, through which activation of both proximal and distal promoters is mediated. Introduction of point mutations into the identified C/EBP site in EBV-BAC caused reduced LMP1 transcription from both LMP1 promoters in epithelial cells. In conclusion, C/EBP is a newly identified transcriptional activator of the LMP1 gene, independent of the EBNA2 coactivator.
UR - http://www.scopus.com/inward/record.url?scp=82755163018&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=82755163018&partnerID=8YFLogxK
U2 - 10.1074/jbc.M111.271734
DO - 10.1074/jbc.M111.271734
M3 - Article
C2 - 22013073
AN - SCOPUS:82755163018
SN - 0021-9258
VL - 286
SP - 42524
EP - 42533
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 49
ER -