Inflammatory mediator ultra-low-molecular-weight hyaluronan triggers necrosis of B-precursor leukemia cells with high surface CD44 expression

Shin Kasai, Yoshiyuki Furuichi, Norie Ando, Keiko Kagami, Masako Abe, Takaya Nakane, Kumiko Goi, Takeshi Inukai, Sei Saitoh, Shinichi Ohno, Shogo Okazaki, Osamu Nagano, Hideyuki Saya, Kanji Sugita

研究成果: Article査読

6 被引用数 (Scopus)

抄録

Acute lymphoblastic leukemia (ALL) with mixed lineage leukemia (MLL) gene rearrangements (MLL+ALL) has a dismal prognosis and is characterized by high surface CD44 expression. Known that CD44 has the specific binding sites for a natural ligand hyaluronan (HA), we investigated biological effects of HA with different molecular sizes on MLL+ALL cell lines, and found that the addition of ultra-low-molecular-weight (ULMW)-HA strongly suppressed their thymidine uptakes. The MLL+ALL cell line lacking surface CD44 expression established by genome editing showed no suppression of thymidine uptake. Surface CD44-high B-precursor ALL cell lines other than MLL+, but not T-ALL cell lines, were also suppressed in their thymidine uptakes. The inhibition of thymidine uptakes was because of induction of cell death, but dead cells lacked features of apoptosis on cytospin smears and flow cytometric analysis. The cell death was neither blocked by pan-caspase inhibitor nor autophagy inhibitor, but was completely blocked by necrosis inhibitor necrostatin-1. Necrotic cell death was further supported by a marked release of a high-mobility protein group B1 and morphological changes on transmission electron microscopy. Elevation of intracellular reactive oxygen species production suggested a role for inducing this necrotic cell death. ULMW-HA-triggered cell death was similarly demonstrated in surface CD44-high primary B-precursor leukemia cells. Assuming that ULMW-HA is abundantly secreted at the site of infection and inflammation, this study sheds light on understanding the mechanism of a transient inflammation-associated remission of leukemia. Further, the CD44-targeting may become an effective approach in future for the treatment of refractory B-precursor ALL by its capability of predominantly eradicating CD44-high leukemia-initiating cells.

本文言語English
ページ(範囲)e2857
ジャーナルCell death & disease
8
6
DOI
出版ステータスPublished - 01-06-2017
外部発表はい

All Science Journal Classification (ASJC) codes

  • 免疫学
  • 細胞および分子神経科学
  • 細胞生物学
  • 癌研究

フィンガープリント

「Inflammatory mediator ultra-low-molecular-weight hyaluronan triggers necrosis of B-precursor leukemia cells with high surface CD44 expression」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル