TY - JOUR
T1 - Interactions between Egr1 and AP1 factors in regulation of tyrosine hydroxylase transcription
AU - Nakashima, Akira
AU - Ota, Akira
AU - Sabban, Esther L.
N1 - Funding Information:
We thank Dr. Bistra Nankova for her insightful suggestions. This work was partially supported by grant NS28869 from National Institutes of Health, grant N00014-02-1-0315 from Office of Naval Research and a grant from Philip Morris, Inc.
PY - 2003/4/10
Y1 - 2003/4/10
N2 - Several treatments which regulate tyrosine hydroxylase (TH) transcription, such as stress in vivo, or 12-O-tetradecanoylphorbol-13-acetate (TPA) in cell culture, induce both Egr1 and AP1 factors. Previously, we identified a functional Egr1 motif overlapping with Sp1 site in the rat TH promoter. Its response to Egr1 also required the presence of an AP1/Ebox motif. Here, we further examined the cross-talk between these sites. Insertion of 10- or 20-bp between the Sp1/Egr1 and AP1/Ebox elements, reduced the ability of Egr1 to upregulate luciferase reporter activity controlled by the proximal 272 nucleotides of the rat TH promoter in PC12 cells. Electrophoretic mobility shift assays with nuclear extracts from TPA treated cells were used to identify the composition of the factors which bound the AP1/Ebox motif and whether there is competition with factors which bind the Sp1/Egr1 motif. The complexes formed with labeled AP1/E box oligonucleotide were reduced or supershifted with antisera to Fos family, c-Fos, Fra-2, and Jun D. Excess Sp1/Egr1 oligonucleotide or anti Egr1 antisera did not compete. Fra-2 was a major component of the complex after 2-4 h TPA. Transfection of PC12 cells with Fra-2 induced reporter activity requiring the AP1, but not the Egr1 motif. However, when cotransfected with Fra-2, Egr1 expression plasmids elicited lower induction of luciferase activity than observed with Egr1 alone. Our results suggest that although it does not compete for binding to the promoter, Egr1 can modulate the regulation of TH transcription by AP1 factors.
AB - Several treatments which regulate tyrosine hydroxylase (TH) transcription, such as stress in vivo, or 12-O-tetradecanoylphorbol-13-acetate (TPA) in cell culture, induce both Egr1 and AP1 factors. Previously, we identified a functional Egr1 motif overlapping with Sp1 site in the rat TH promoter. Its response to Egr1 also required the presence of an AP1/Ebox motif. Here, we further examined the cross-talk between these sites. Insertion of 10- or 20-bp between the Sp1/Egr1 and AP1/Ebox elements, reduced the ability of Egr1 to upregulate luciferase reporter activity controlled by the proximal 272 nucleotides of the rat TH promoter in PC12 cells. Electrophoretic mobility shift assays with nuclear extracts from TPA treated cells were used to identify the composition of the factors which bound the AP1/Ebox motif and whether there is competition with factors which bind the Sp1/Egr1 motif. The complexes formed with labeled AP1/E box oligonucleotide were reduced or supershifted with antisera to Fos family, c-Fos, Fra-2, and Jun D. Excess Sp1/Egr1 oligonucleotide or anti Egr1 antisera did not compete. Fra-2 was a major component of the complex after 2-4 h TPA. Transfection of PC12 cells with Fra-2 induced reporter activity requiring the AP1, but not the Egr1 motif. However, when cotransfected with Fra-2, Egr1 expression plasmids elicited lower induction of luciferase activity than observed with Egr1 alone. Our results suggest that although it does not compete for binding to the promoter, Egr1 can modulate the regulation of TH transcription by AP1 factors.
UR - http://www.scopus.com/inward/record.url?scp=0037430846&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037430846&partnerID=8YFLogxK
U2 - 10.1016/S0169-328X(03)00047-0
DO - 10.1016/S0169-328X(03)00047-0
M3 - Article
C2 - 12670703
AN - SCOPUS:0037430846
SN - 0169-328X
VL - 112
SP - 61
EP - 69
JO - Molecular Brain Research
JF - Molecular Brain Research
IS - 1-2
ER -