Large-time approximation of a solution to a reaction-diffusion system with a balance law by its spatial average

研究成果: ジャーナルへの寄稿学術論文査読

1 被引用数 (Scopus)

抄録

A reaction-diffusion system which has a balance law is studied. Homogeneous Neumann boundary conditions are imposed. When a nonnegative global solution uniformly converges to a steady state with a polynomial rate as time goes to infinity, it is proved that the spatial average of the solution to the system describes a large-time approximation of the solution itself with an exponential rate being sharper than those obtained before. The proof is based on properties of a solution for the corresponding system of ordinary differential equations and an L estimate of an analytic semigroup.

本文言語英語
ページ(範囲)85-96
ページ数12
ジャーナルAnalysis (Germany)
22
1
DOI
出版ステータス出版済み - 2002
外部発表はい

All Science Journal Classification (ASJC) codes

  • 分析
  • 数値解析
  • 応用数学

フィンガープリント

「Large-time approximation of a solution to a reaction-diffusion system with a balance law by its spatial average」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル