Long-lasting impairment of associative learning is correlated with a dysfunction of N-methyl-D-aspartate-extracellular signaling-regulated kinase signaling in mice after withdrawal from repeated administration of phencyclidine

Takeshi Enomoto, Yukihiro Noda, Akihiro Mouri, Eun Joo Shin, Dayong Wang, Rina Murai, Kazuo Hotta, Hiroshi Furukawa, Atsumi Nitta, Hyoung Chun Kim, Toshitaka Nabeshima

研究成果: ジャーナルへの寄稿学術論文査読

50 被引用数 (Scopus)

抄録

In humans, the administration of phencyclidine causes schizophrenic-like symptoms that persist for several weeks after withdrawal from phencyclidine use. We demonstrated here that mice pretreated with phencyclidine (10 mg/kg/day s.c. for 14 days) showed an enduring impairment of associative in a Pavlovian fear conditioning 8 days after cessation of phencyclidine treatment. Extracellular signaling-regulated kinase (ERK) was transiently activated in the amygdalae and hippocampi of saline-treated mice after conditioning. In the phencyclidinetreated mice, the basal level of ERK activation was elevated in the hippocampus, whereas the activation was impaired in the amygdala and hippocampus after conditioning. Exogenous N-methyl-D-aspartate (NMDA), glycine, and spermidine-induced ERK activation was not observed in slices of hippocampus and amygdala prepared from phencyclidine-treated mice. Repeated olanzapine (3 mg/kg/day p.o. for 7 days), but not haloperidol (1 mg/kg/day p.o. for 7 days), treatment reversed the impairment of associative learning and of fear conditioning-induced ERK activation in repeated phencyclidine-treated mice. Our findings suggest an involvement of abnormal ERK signaling via NMDA receptors in repeated phencyclidine treatment-induced cognitive dysfunction. Furthermore, our phencyclidine-treated mice would be a useful model for studying the effect of antipsychotics on cognitive dysfunction in schizophrenia.

本文言語英語
ページ(範囲)1765-1774
ページ数10
ジャーナルMolecular Pharmacology
68
6
DOI
出版ステータス出版済み - 12-2005
外部発表はい

All Science Journal Classification (ASJC) codes

  • 分子医療
  • 薬理学

フィンガープリント

「Long-lasting impairment of associative learning is correlated with a dysfunction of N-methyl-D-aspartate-extracellular signaling-regulated kinase signaling in mice after withdrawal from repeated administration of phencyclidine」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル