TY - JOUR
T1 - Measurement of 1,2-diacylglycerol and ceramide in hearts subjected to ischemic preconditioning
AU - Murase, Kichiro
AU - Okumura, Kenji
AU - Hayashi, Kazunori
AU - Matsui, Hideo
AU - Toki, Yukio
AU - Ito, Takayuki
AU - Hayakawa, Tetsuo
PY - 2000/3/10
Y1 - 2000/3/10
N2 - An accumulation of recent evidence suggests that the mechanism in ischemic preconditioning (IPC) may involve the activation of protein kinase C (PKC) regulatory pathway. In this study, we examined whether the content of 1,2-diacylglycerol (1,2-DAG) and ceramide, which are intracellular second messengers regulating PKC activity, change during IPC in isolated perfused rat hearts, and whether the observed change in 1,2-DAG is accompanied with alteration in its fatty acid composition. Hearts subjected to IPC, consisting of 5-min transient global ischemia followed by 5-min reperfusion, presented a significant functional recovery during subsequent 40-min reperfusion following 40-min global ischemia compared with non-preconditioned hearts. An increase in 1,2-DAG content was observed in hearts subjected to 5-min transient ischemia compared with non-ischemic control hearts, however this was not seen in hearts harvested after 5-min reperfusion following 5-min ischemia. While fatty acid composition in 1,2-DAG was virtually unchanged in hearts subjected to 5-min ischemia, saturated 1,2-DAG decreased and monounsaturated/polyunsaturated 1,2-DAG increased in hearts reperfused for 5- min following 5-min ischemia compared with the non-ischemic control hearts. Ceramide mass did not change significantly, suggesting that the contribution of ceramide may be small in IPC. These data are in concert with the hypothesis that 1,2-DAG is a second messenger in IPC and the changes in fatty acid composition of 1,2-DAG may add new insight concerning signal transduction pathway in IPC.
AB - An accumulation of recent evidence suggests that the mechanism in ischemic preconditioning (IPC) may involve the activation of protein kinase C (PKC) regulatory pathway. In this study, we examined whether the content of 1,2-diacylglycerol (1,2-DAG) and ceramide, which are intracellular second messengers regulating PKC activity, change during IPC in isolated perfused rat hearts, and whether the observed change in 1,2-DAG is accompanied with alteration in its fatty acid composition. Hearts subjected to IPC, consisting of 5-min transient global ischemia followed by 5-min reperfusion, presented a significant functional recovery during subsequent 40-min reperfusion following 40-min global ischemia compared with non-preconditioned hearts. An increase in 1,2-DAG content was observed in hearts subjected to 5-min transient ischemia compared with non-ischemic control hearts, however this was not seen in hearts harvested after 5-min reperfusion following 5-min ischemia. While fatty acid composition in 1,2-DAG was virtually unchanged in hearts subjected to 5-min ischemia, saturated 1,2-DAG decreased and monounsaturated/polyunsaturated 1,2-DAG increased in hearts reperfused for 5- min following 5-min ischemia compared with the non-ischemic control hearts. Ceramide mass did not change significantly, suggesting that the contribution of ceramide may be small in IPC. These data are in concert with the hypothesis that 1,2-DAG is a second messenger in IPC and the changes in fatty acid composition of 1,2-DAG may add new insight concerning signal transduction pathway in IPC.
UR - http://www.scopus.com/inward/record.url?scp=0034628686&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034628686&partnerID=8YFLogxK
U2 - 10.1016/S0024-3205(00)00466-5
DO - 10.1016/S0024-3205(00)00466-5
M3 - Article
C2 - 10794496
AN - SCOPUS:0034628686
SN - 0024-3205
VL - 66
SP - 1491
EP - 1500
JO - Life Sciences
JF - Life Sciences
IS - 16
ER -