Mesenchymal stem cells inhibit multiple myeloma cells via the Fas/Fas ligand pathway

Ikiru Atsuta, Shiyu Liu, Yasuo Miura, Kentaro Akiyama, Chider Chen, Ying An, Songtao Shi, Fa Ming Chen

研究成果: ジャーナルへの寄稿学術論文査読

41 被引用数 (Scopus)


Introduction. Cell-based therapy represents a new frontier in the treatment of a wide variety of human diseases traditionally associated with morbidity outcomes, including those involving inflammation, autoimmunity, tissue damage, and cancer. However, the use of mesenchymal stem cells (MSCs) to treat multiple myeloma (MM) bone disease has raised concerns. Specifically, evidence has shown that infused MSCs might support tumor growth and metastasis. Methods. In this study, we used a standard disseminated MM model in mice to identify the in vivo effects of intravenous MSC infusion. In addition, a series of in vitro co-culture assays were preformed to explore whether Fas/Fas ligand (Fas-L) is involved in the inhibitory effects of MSCs on MM cells. Results: In the MM mouse model, treatment of MSCs with highly expressed Fas ligand (Fas-Lhigh MSCs) showed remarkable inhibitory effects on MM indenization in terms of extending the mouse survival rate and inhibiting tumor growth, bone resorption in the lumbus and collum femoris, and MM cell metastasis in the lungs and kidneys. In addition, reduced proliferation and increased apoptosis of MM cells was observed when co-cultured with Fas-Lhigh MSCs in vitro. Furthermore, mechanistically, the binding between Fas and Fas-L significantly induced apoptosis in MM cells, as evidenced through an increase in the expression of apoptosis marker and Fas in MM cells. In contrast, Fas-L null MSCs promote MM growth. Conclusions: These data suggest that Fas/Fas-L-induced MM apoptosis plays a crucial role in the MSC-based inhibition of MM growth. Although whether MSCs inhibit or promote cancer growth remains controversial, the levels of Fas-L expression in MSCs determine, at least partially, the effects of MSCs on MM cell growth.

ジャーナルStem Cell Research and Therapy
出版ステータス出版済み - 2013

All Science Journal Classification (ASJC) codes

  • 医学(その他)
  • 分子医療
  • 生化学、遺伝学、分子生物学(その他)
  • 細胞生物学


「Mesenchymal stem cells inhibit multiple myeloma cells via the Fas/Fas ligand pathway」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。