TY - JOUR
T1 - Mountain-Cultivated Ginseng Attenuates Phencyclidine-Induced Abnormal Behaviors in Mice by Positive Modulation of Glutathione in the Prefrontal Cortex of Mice
AU - Tran, The Vinh
AU - Shin, Eun Joo
AU - Ko, Sung Kwon
AU - Nam, Yunsung
AU - Chung, Yoon Hee
AU - Jeong, Ji Hoon
AU - Jang, Choon Gon
AU - Nah, Seung Yeol
AU - Yamada, Kiyofumi
AU - Nabeshima, Toshitaka
AU - Byun, Jae Kyung
AU - Kim, Hyoung Chun
N1 - Publisher Copyright:
© Copyright Mary Ann Liebert, Inc. and Korean Society of Food Science and Nutrition 2016.
PY - 2016/10
Y1 - 2016/10
N2 - Escalating evidence indicates that ginseng treatment protects against psychotoxic behaviors and memory impairment. Although the underlying mechanism of schizophrenia remains elusive, recent investigations proposed that downregulation of glutathione (GSH) can be involved in the pathogenesis of this disorder. Since little is known about the effects of ginseng in a schizophrenia-like animal model, we selected mountain-cultivated ginseng (MG) from a variety of ginseng extracts to investigate the effect of ginseng on the psychosis induced by phencyclidine (PCP) in mice. PCP (10 mg/kg/day, s.c.) was administered for 14 consecutive days. Novel object recognition, forced swimming, and social interaction tests were performed during the withdrawal period of 7 days. In addition, behavioral sensitization to an acute challenge of PCP was evaluated. The parameters of the GSH-dependent system in the prefrontal cortex (PFC) were examined. MG (200 mg/kg, i.p./day) or antipsychotic clozapine (10 mg/kg, p.o./day) was administered for seven consecutive days after the final PCP treatment. PCP significantly produced abnormal behaviors, followed by increases in Nrf2 nuclear translocation, its DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression in the PFC. PCP treatment significantly decreased GSH/glutathione disulfide (GSSG) ratio and glutathione peroxidase (GPx) activity. MG significantly attenuated abnormal behaviors and the decreases in GSH/GSSG ratio and GPx activity induced by PCP. MG attenuated the increases in Nrf2 activity and GCL expression caused by PCP. The protective potentials of MG were comparable to those of clozapine. MG ameliorates PCP-induced schizophrenia-like psychosis in mice through the positive modulation of the glutathione system.
AB - Escalating evidence indicates that ginseng treatment protects against psychotoxic behaviors and memory impairment. Although the underlying mechanism of schizophrenia remains elusive, recent investigations proposed that downregulation of glutathione (GSH) can be involved in the pathogenesis of this disorder. Since little is known about the effects of ginseng in a schizophrenia-like animal model, we selected mountain-cultivated ginseng (MG) from a variety of ginseng extracts to investigate the effect of ginseng on the psychosis induced by phencyclidine (PCP) in mice. PCP (10 mg/kg/day, s.c.) was administered for 14 consecutive days. Novel object recognition, forced swimming, and social interaction tests were performed during the withdrawal period of 7 days. In addition, behavioral sensitization to an acute challenge of PCP was evaluated. The parameters of the GSH-dependent system in the prefrontal cortex (PFC) were examined. MG (200 mg/kg, i.p./day) or antipsychotic clozapine (10 mg/kg, p.o./day) was administered for seven consecutive days after the final PCP treatment. PCP significantly produced abnormal behaviors, followed by increases in Nrf2 nuclear translocation, its DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression in the PFC. PCP treatment significantly decreased GSH/glutathione disulfide (GSSG) ratio and glutathione peroxidase (GPx) activity. MG significantly attenuated abnormal behaviors and the decreases in GSH/GSSG ratio and GPx activity induced by PCP. MG attenuated the increases in Nrf2 activity and GCL expression caused by PCP. The protective potentials of MG were comparable to those of clozapine. MG ameliorates PCP-induced schizophrenia-like psychosis in mice through the positive modulation of the glutathione system.
UR - http://www.scopus.com/inward/record.url?scp=84992413056&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84992413056&partnerID=8YFLogxK
U2 - 10.1089/jmf.2016.3751
DO - 10.1089/jmf.2016.3751
M3 - Article
AN - SCOPUS:84992413056
SN - 1096-620X
VL - 19
SP - 961
EP - 969
JO - Journal of Medicinal Food
JF - Journal of Medicinal Food
IS - 10
ER -