MRI: Magnetic Resonance Q-Space Imaging Using Generating Function and Bayesian Inference

Eizou Umezawa, Yukiko Sonoda, Itsuki Itoshiro

研究成果: 書籍/レポート タイプへの寄稿

抄録

Diffusional kurtosis imaging provides the kurtosis for the diffusion displacement of water molecules in vivo. Kurtosis-related metrics demonstrate high sensitivities in several disease diagnoses; however, they contain large systematic and statistical errors. The systematic error can be caused by the truncation of series expansions of the generating functions used for fitting to provide the diffusion parameters, and the cause of the statistical error is overfitting. If we increase the truncation order to reduce the systematic error, overfitting becomes increasingly severe. Hence, a Bayesian approach is developed, in which the arbitrariness regarding the determination of the posterior distributions or the regularization parameter is excluded as much as possible. The Bayesian approach effectively prevents overfitting and reduces imaging noise in kurtosis maps, thereby enabling the use of higher-order terms in the fitting. Our simulation shows that the use of higher-order terms reduced truncation-derived systematic errors in kurtosis estimation.

本文言語英語
ホスト出版物のタイトルMultidisciplinary Computational Anatomy
ホスト出版物のサブタイトルToward Integration of Artificial Intelligence with MCA-based Medicine
出版社Springer Nature
ページ315-321
ページ数7
ISBN(電子版)9789811643255
ISBN(印刷版)9789811643248
DOI
出版ステータス出版済み - 01-01-2021
外部発表はい

All Science Journal Classification (ASJC) codes

  • 医学一般
  • 生化学、遺伝学、分子生物学一般

フィンガープリント

「MRI: Magnetic Resonance Q-Space Imaging Using Generating Function and Bayesian Inference」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル