Non-Linear Evolution Equations with Non-Local Coefficients and Zero-Neumann Condition: One Dimensional Case

Akisato Kubo, Hiroki Hoshino

研究成果: 書籍/レポート タイプへの寄稿

抄録

In this paper, we investigate the global existence in time and asymptotic behaviour of solutions of non-linear evolution equations with strong dissipation and non-local coefficients in one spacial dimension, arising in mathematical models of cell migration. We consider the initial boundary value problem with zero-Neumann condition for the equation, applying the argument of the singular integral operator to the non-local term, and we obtain the L2 -estimate of it which is necessary for the energy estimates of our problems. Finally we can prove the desired result by the standard argument of the interation scheme of our problem.

本文言語英語
ホスト出版物のタイトルTrends in Mathematics
出版社Springer Science and Business Media Deutschland GmbH
ページ647-658
ページ数12
DOI
出版ステータス出版済み - 2023

出版物シリーズ

名前Trends in Mathematics
Part F1649
ISSN(印刷版)2297-0215
ISSN(電子版)2297-024X

All Science Journal Classification (ASJC) codes

  • 数学一般

フィンガープリント

「Non-Linear Evolution Equations with Non-Local Coefficients and Zero-Neumann Condition: One Dimensional Case」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル