Phencyclidine impairs latent learning in mice: Interaction between glutamatergic systems and sigma1 receptors

Akihiro Noda, Yukihiro Noda, Hiroyuki Kamei, Kenji Ichihara, Takayoshi Mamiya, Taku Nagai, Shin ichi Sugiura, Hiroshi Furukawa, Toshitaka Nabeshima

研究成果: Article査読

58 被引用数 (Scopus)

抄録

The effect of phencyclidine (PCP) on latent learning was investigated using a one-trial water-finding task in mice. Mice without water deprivation were given PCP or saline before a training trial, which consisted of exposure to a novel open-field environment with an alcove containing a water tube. Twenty to twenty-four hours after water deprivation, animals were placed in the same apparatus and the time required to find the water tube measured (test trial). Saline-treated trained mice showed a significantly shorter time to find the water tube during the test trial (finding latency) than naive mice that had not been trained. When PCP (1 mg/kg i.p.) was administered before the training trial, the finding latency was significantly prolonged in comparison with that in the saline-treated mice, indicating that PCP induced impairment of latent learning. 1-(3,4-Dimethoxy-phenethyl)-4-(3-phenylpropyl)piperazine dihydrochloride (SA4503: 0.3 mg/kg s.c.) and (+)-pentazocine (1 mg/kg s.c.), selective sigma1 receptor agonists, or D-cycloserine (10 and 30 mg/kg, s.c.), a glycine binding site agonist, significantly counteracted the PCP-induced impairment of latent learning, whereas (+)-SKF-10,047 (0.1-3 mg/kg s.c.), a putative sigma1 receptor agonist, did not. The ameliorating effects of SA4503 and (+)-pentazocine were antagonized by N,N-dipropyl-2-(4-methoxy-3-(2-phenylethoxy) phenyl) ethylamine (NE-100: 1 mg/kg i.p.), a selective sigma1 receptor antagonist. SA4503 also ameliorated the impairment of latent learning induced by dizocilpine, a non-competitive N-methyl-D-aspartate receptor antagonist, the effect being antagonized by NE-100. These results suggest that PCP induces an impairment of latent learning, this effect being mediated via glutamatergic systems, and that activation of sigma1 receptors ameliorates impairment of latent learning induced by PCP.

本文言語English
ページ(範囲)451-460
ページ数10
ジャーナルNeuropsychopharmacology
24
4
DOI
出版ステータスPublished - 2001
外部発表はい

All Science Journal Classification (ASJC) codes

  • 薬理学
  • 精神医学および精神衛生

フィンガープリント

「Phencyclidine impairs latent learning in mice: Interaction between glutamatergic systems and sigma<sub>1</sub> receptors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル