TY - JOUR
T1 - Protective effects of recombinant human erythropoietin against pressure overload-induced left ventricular remodeling and premature death in mice.
AU - Wang, Wanting
AU - Kagaya, Yutaka
AU - Asaumi, Yasuhide
AU - Fukui, Shigefumi
AU - Takeda, Morihiko
AU - Shimokawa, Hiroaki
PY - 2011
Y1 - 2011
N2 - Chronic left ventricular (LV) pressure overload induced by hypertension is one of the most common causes of heart failure. Earlier reports have shown the cardioprotective effects of erythropoietin (EPO). In the present study, we tested the hypothesis that recombinant human EPO exerts a protective effect against pressure-overload induced LV remodeling. Mice subjected to transverse aortic constriction (TAC) (n = 70) were randomly assigned to the treatment with phosphate buffer solution (PBS) (TAC-PBS) or EPO (2,000 U/kg twice a week) (TAC-EPO). At 8 weeks after TAC, LV weight was comparably increased in both TAC groups compared with sham-operated mice (Sham) (both P < 0.001). The treatment with EPO improved the survival of TAC mice as compared with treatment with PBS (80 vs. 47%, P < 0.01), which was associated with reductions in the extent of myocardial fibrosis and the number of TUNEL positive cardiomyocytes (both P < 0.05). Echocardiography revealed that TAC increased LV chamber diameter and decreased LV fractional shortening compared with Sham (P < 0.05), which was ameliorated by the treatment with EPO (P < 0.05). In TAC-EPO as compared to TAC-PBS, phosphorylation of STAT3, Akt and eNOS was all increased, while phosphorylation of p38 was decreased (all P < 0.05). Importantly, the expression level of VEGF and the capillary density in LV myocardium were similar among the 3 groups. These results suggest that recombinant human EPO ameliorates the cardiac remodeling and the premature death associated with chronic LV pressure overload through the mechanisms independent of angiogenesis.
AB - Chronic left ventricular (LV) pressure overload induced by hypertension is one of the most common causes of heart failure. Earlier reports have shown the cardioprotective effects of erythropoietin (EPO). In the present study, we tested the hypothesis that recombinant human EPO exerts a protective effect against pressure-overload induced LV remodeling. Mice subjected to transverse aortic constriction (TAC) (n = 70) were randomly assigned to the treatment with phosphate buffer solution (PBS) (TAC-PBS) or EPO (2,000 U/kg twice a week) (TAC-EPO). At 8 weeks after TAC, LV weight was comparably increased in both TAC groups compared with sham-operated mice (Sham) (both P < 0.001). The treatment with EPO improved the survival of TAC mice as compared with treatment with PBS (80 vs. 47%, P < 0.01), which was associated with reductions in the extent of myocardial fibrosis and the number of TUNEL positive cardiomyocytes (both P < 0.05). Echocardiography revealed that TAC increased LV chamber diameter and decreased LV fractional shortening compared with Sham (P < 0.05), which was ameliorated by the treatment with EPO (P < 0.05). In TAC-EPO as compared to TAC-PBS, phosphorylation of STAT3, Akt and eNOS was all increased, while phosphorylation of p38 was decreased (all P < 0.05). Importantly, the expression level of VEGF and the capillary density in LV myocardium were similar among the 3 groups. These results suggest that recombinant human EPO ameliorates the cardiac remodeling and the premature death associated with chronic LV pressure overload through the mechanisms independent of angiogenesis.
UR - http://www.scopus.com/inward/record.url?scp=84855375368&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84855375368&partnerID=8YFLogxK
U2 - 10.1620/tjem.225.131
DO - 10.1620/tjem.225.131
M3 - Article
C2 - 21937860
AN - SCOPUS:84855375368
SN - 0040-8727
VL - 225
SP - 131
EP - 143
JO - The Tohoku Journal of Experimental Medicine
JF - The Tohoku Journal of Experimental Medicine
IS - 2
ER -