TY - JOUR
T1 - Recent progress on the role of ChREBP in glucose and lipid metabolism
AU - Iizuka, Katsumi
PY - 2013
Y1 - 2013
N2 - Carbohydrate response element binding protein (ChREBP) is a transcription factor activated by glucose that is highly expressed in liver, pancreatic β-cells, brown and white adipose tissues, and muscle. We reported that hepatic suppression of the Chrebp gene improves hepatic steatosis, glucose intolerance, and obesity in genetically obese mice. Moreover, we have studied the role of ChREBP with special reference to feedforward and feedback looping in liver and pancreatic β-cells. Recently, several groups reported that (1) glucose activates ChREBP-α transactivity and in turn ChREBP-α induces ChREBP-β on both transcriptional and translational levels in adipose tissues, and (2) ChREBP regulates glucose transporter type 4 mRNA levels, which may affect glucose uptake in adipose tissues. Moreover, in adipose tissues of obese patients, Chrebpb mRNA levels were much lower than those in lean subjects, while the levels were much higher in liver of obese patients than those in lean subjects. These findings suggest that Chrebpb mRNA levels are different in various tissues and probably in the stages of diabetes mellitus. Herein, we review recent progress in the study of ChREBP with special references to (1) the mechanisms regulating ChREBP transactivity (posttranslational modifications, intramolecular glucose sensing module, feedforward mechanism, and the feedback loop between ChREBP and its target genes), and (2) the role of ChREBP in liver, pancreatic islets and adipose tissues. Understanding the role of ChREBP in each tissue will provide important insight into the pathogenesis of metabolic syndrome.
AB - Carbohydrate response element binding protein (ChREBP) is a transcription factor activated by glucose that is highly expressed in liver, pancreatic β-cells, brown and white adipose tissues, and muscle. We reported that hepatic suppression of the Chrebp gene improves hepatic steatosis, glucose intolerance, and obesity in genetically obese mice. Moreover, we have studied the role of ChREBP with special reference to feedforward and feedback looping in liver and pancreatic β-cells. Recently, several groups reported that (1) glucose activates ChREBP-α transactivity and in turn ChREBP-α induces ChREBP-β on both transcriptional and translational levels in adipose tissues, and (2) ChREBP regulates glucose transporter type 4 mRNA levels, which may affect glucose uptake in adipose tissues. Moreover, in adipose tissues of obese patients, Chrebpb mRNA levels were much lower than those in lean subjects, while the levels were much higher in liver of obese patients than those in lean subjects. These findings suggest that Chrebpb mRNA levels are different in various tissues and probably in the stages of diabetes mellitus. Herein, we review recent progress in the study of ChREBP with special references to (1) the mechanisms regulating ChREBP transactivity (posttranslational modifications, intramolecular glucose sensing module, feedforward mechanism, and the feedback loop between ChREBP and its target genes), and (2) the role of ChREBP in liver, pancreatic islets and adipose tissues. Understanding the role of ChREBP in each tissue will provide important insight into the pathogenesis of metabolic syndrome.
UR - http://www.scopus.com/inward/record.url?scp=84878518534&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878518534&partnerID=8YFLogxK
U2 - 10.1507/endocrj.EJ13-0121
DO - 10.1507/endocrj.EJ13-0121
M3 - Review article
C2 - 23604004
AN - SCOPUS:84878518534
SN - 0918-8959
VL - 60
SP - 543
EP - 555
JO - endocrine journal
JF - endocrine journal
IS - 5
ER -