TY - JOUR
T1 - Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis
AU - Tomida, Shuta
AU - Takeuchi, Toshiyuki
AU - Shimada, Yukako
AU - Arima, Chinatsu
AU - Matsuo, Keitaro
AU - Mitsudomi, Tetsuya
AU - Yatabe, Yasushi
AU - Takahashi, Takashi
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 2009/6/10
Y1 - 2009/6/10
N2 - Purpose: In order to aid the development of patient-tailored therapeutics, we attempted to identify a relapse-related signature that allows selection of a group of adenocarcinoma patients with a high probability of relapse. Patients and Methods: Whole-genome expression profiles were analyzed in 117 lung adenocarcinoma samples using microarrays consisting of 41,000 probes. A weighted voting classifier for identifying patients with a relapse-related signature was constructed with an approach that allowed no information leakage during each training step, using 10-fold cross-validation and 100 random partitioning procedures. Results: We identified a relapse-related molecular signature represented by 82 probes (RRS-82) through genome-wide expression profiling analysis of a training set of 60 patients. The robustness of RRS-82 in the selection of patients with a high probability of relapse was then validated with a completely blinded test set of 27 adenocarcinoma patients, showing a clear association of high risk RRS-82 with very poor patient prognosis regardless of disease stage. The discriminatory power of RRS-82 was further validated using an additional independent cohort of 30 stage I patients who underwent surgery at a distinct period of time as well as with the Duke data set on a different platform. Furthermore, completely separate training and validation procedures using another data set recently reported by the Director's Challenge Consortium also successfully confirmed the predictive power of the genes comprising RRS-82. Conclusion: RRS-82 may be useful for identifying adenocarcinoma patients at very high risk for relapse, even those with cancer in the early stage.
AB - Purpose: In order to aid the development of patient-tailored therapeutics, we attempted to identify a relapse-related signature that allows selection of a group of adenocarcinoma patients with a high probability of relapse. Patients and Methods: Whole-genome expression profiles were analyzed in 117 lung adenocarcinoma samples using microarrays consisting of 41,000 probes. A weighted voting classifier for identifying patients with a relapse-related signature was constructed with an approach that allowed no information leakage during each training step, using 10-fold cross-validation and 100 random partitioning procedures. Results: We identified a relapse-related molecular signature represented by 82 probes (RRS-82) through genome-wide expression profiling analysis of a training set of 60 patients. The robustness of RRS-82 in the selection of patients with a high probability of relapse was then validated with a completely blinded test set of 27 adenocarcinoma patients, showing a clear association of high risk RRS-82 with very poor patient prognosis regardless of disease stage. The discriminatory power of RRS-82 was further validated using an additional independent cohort of 30 stage I patients who underwent surgery at a distinct period of time as well as with the Duke data set on a different platform. Furthermore, completely separate training and validation procedures using another data set recently reported by the Director's Challenge Consortium also successfully confirmed the predictive power of the genes comprising RRS-82. Conclusion: RRS-82 may be useful for identifying adenocarcinoma patients at very high risk for relapse, even those with cancer in the early stage.
UR - http://www.scopus.com/inward/record.url?scp=67649965344&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67649965344&partnerID=8YFLogxK
U2 - 10.1200/JCO.2008.19.7053
DO - 10.1200/JCO.2008.19.7053
M3 - Article
C2 - 19414676
AN - SCOPUS:67649965344
SN - 0732-183X
VL - 27
SP - 2793
EP - 2799
JO - Journal of Clinical Oncology
JF - Journal of Clinical Oncology
IS - 17
ER -