TY - JOUR
T1 - Relationships between the acoustic startle response and prepulse inhibition in C57BL/6J mice
T2 - A large-scale meta-analytic study
AU - Shoji, Hirotaka
AU - Miyakawa, Tsuyoshi
N1 - Publisher Copyright:
© 2018 The Author(s).
PY - 2018/7/13
Y1 - 2018/7/13
N2 - Prepulse inhibition (PPI) is the suppression of a startle reflex response to a startle stimulus that occurs when a weak prepulse stimulus precedes the startle stimulus. PPI is measured to assess sensorimotor gating across species, including humans and rodents. Reduced PPI, which is thought to reflect dysfunction of sensorimotor gating, is reported in patients with psychiatric disorders, such as schizophrenia, bipolar disorder, and post-traumatic stress disorder (PTSD), and in animal models of these disorders. Individual differences in basal startle reactivity occur even in a genetically homogenous group of animals; however, there is limited information regarding whether basal levels of the startle response are associated with variations in PPI levels. Here, to explore the relationship between an acoustic startle response (ASR) and PPI, we performed a meta-analysis of data obtained from more than 1300 C57BL/6J male mice on the influence of an ASR to 110- and 120-dB startle stimuli on the PPI levels of the ASR at 74- and 78-dB prepulse intensities. Examination of scatter plots of the ASR amplitudes and PPI levels followed by correlation analyses indicated that there is no simple linear relationship between the two measures; when mice were divided into three groups on the basis of their startle amplitudes, there were positive correlations between the amplitude of the ASR to the 110-dB stimulus and PPI levels in a group of mice that showed lower ASR amplitudes among the genetically homogenous group, whereas no significant correlations were identified in groups of mice that showed intermediate and higher ASR amplitudes. As indicated by the correlation analysis, the lowest responders to the 110-dB stimulus exhibited lower levels of PPI than the intermediate or higher responders. In contrast, for the 120-dB stimulus, a negative correlation was identified between the amplitude of the ASR to the 120-dB stimulus and the PPI levels in the groups of mice that showed intermediate or higher ASR amplitudes. Lower and intermediate responders showed higher levels of PPI than higher responders to the 120-dB stimulus. These findings suggest that basal startle reactivity may affect PPI levels in male C57BL/6J mice, thus representing one potential confounding factor that may confuse the interpretation of PPI results. These findings emphasize the importance of careful examination of startle reactivity to ensure a reliable assessment of PPI.
AB - Prepulse inhibition (PPI) is the suppression of a startle reflex response to a startle stimulus that occurs when a weak prepulse stimulus precedes the startle stimulus. PPI is measured to assess sensorimotor gating across species, including humans and rodents. Reduced PPI, which is thought to reflect dysfunction of sensorimotor gating, is reported in patients with psychiatric disorders, such as schizophrenia, bipolar disorder, and post-traumatic stress disorder (PTSD), and in animal models of these disorders. Individual differences in basal startle reactivity occur even in a genetically homogenous group of animals; however, there is limited information regarding whether basal levels of the startle response are associated with variations in PPI levels. Here, to explore the relationship between an acoustic startle response (ASR) and PPI, we performed a meta-analysis of data obtained from more than 1300 C57BL/6J male mice on the influence of an ASR to 110- and 120-dB startle stimuli on the PPI levels of the ASR at 74- and 78-dB prepulse intensities. Examination of scatter plots of the ASR amplitudes and PPI levels followed by correlation analyses indicated that there is no simple linear relationship between the two measures; when mice were divided into three groups on the basis of their startle amplitudes, there were positive correlations between the amplitude of the ASR to the 110-dB stimulus and PPI levels in a group of mice that showed lower ASR amplitudes among the genetically homogenous group, whereas no significant correlations were identified in groups of mice that showed intermediate and higher ASR amplitudes. As indicated by the correlation analysis, the lowest responders to the 110-dB stimulus exhibited lower levels of PPI than the intermediate or higher responders. In contrast, for the 120-dB stimulus, a negative correlation was identified between the amplitude of the ASR to the 120-dB stimulus and the PPI levels in the groups of mice that showed intermediate or higher ASR amplitudes. Lower and intermediate responders showed higher levels of PPI than higher responders to the 120-dB stimulus. These findings suggest that basal startle reactivity may affect PPI levels in male C57BL/6J mice, thus representing one potential confounding factor that may confuse the interpretation of PPI results. These findings emphasize the importance of careful examination of startle reactivity to ensure a reliable assessment of PPI.
UR - http://www.scopus.com/inward/record.url?scp=85049921162&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049921162&partnerID=8YFLogxK
U2 - 10.1186/s13041-018-0382-7
DO - 10.1186/s13041-018-0382-7
M3 - Article
C2 - 30001725
AN - SCOPUS:85049921162
SN - 1756-6606
VL - 11
JO - Molecular brain
JF - Molecular brain
IS - 1
M1 - 42
ER -