Role of N-terminus of tyrosine hydroxylase in the biosynthesis of catecholamines

A. Nakashima, N. Hayashi, Y. S. Kaneko, K. Mori, E. L. Sabban, Toshiharu Nagatsu, A. Ota

研究成果: Review article査読

47 被引用数 (Scopus)

抄録

Tyrosine hydroxylase (TH) catalyzes the conversion of l-tyrosine to l-dopa, which is the initial and rate-limiting step in the biosynthesis of catecholamines [CA; dopamine (DA), noradrenaline, and adrenaline], and plays a central role in the neurotransmission and hormonal actions of CA. Thus, TH is related to various neuro-psychiatric diseases such as TH deficiency, Parkinson's disease (PD), and schizophrenia. Four isoforms of human TH (hTH1-hTH4) are produced from a single gene by alternative mRNA splicing in the N-terminal region, whereas two isoforms exist in monkeys and only a single protein exist in all non-primate mammals. A catalytic domain is located within the C-terminal two-thirds of molecule, whereas the part of the enzyme controlling enzyme activity is assigned to the N-terminal end as the regulatory domain. The catalytic activity of TH is end product inhibited by CA, and the phosphorylation of Ser residues (Ser19, Ser31, and especially Ser 40 of hTH1) in the N-terminus relieves the CA-mediated inhibition. Ota and Nakashima et al. have investigated the role of the N-terminus of TH enzyme in the regulation of both the catalytic activity and the intracellular stability by producing various mutants of the N-terminus of hTH1. The expression of the following three enzymes, TH, GTP cyclohydrolase I, which synthesizes the tetrahydrobiopterin cofactor of TH, and aromatic-l-amino acid decarboxylase, which produces DA from l-dopa, were induced in the monkey striatum using harmless adeno-associated virus vectors, resulting in a remarkable improvement in the symptoms affecting PD model monkeys Muramatsu (Hum Gene Ther 13:345-354, 2002). Increased knowledge concerning the amino acid sequences of the N-terminus of TH that control enzyme activity and stability will extend the spectrum of the gene-therapy approach for PD.

本文言語English
ページ(範囲)1355-1362
ページ数8
ジャーナルJournal of Neural Transmission
116
11
DOI
出版ステータスPublished - 11-2009

All Science Journal Classification (ASJC) codes

  • 神経学
  • 臨床神経学
  • 精神医学および精神衛生
  • 生物学的精神医学

フィンガープリント

「Role of N-terminus of tyrosine hydroxylase in the biosynthesis of catecholamines」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル