Semi-Supervised Estimation of Driving Behaviors Using Robust Time-Contrastive Learning

Takuma Kuroki, Osamu Shouno, Junichiro Yoshimoto

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

2 被引用数 (Scopus)

抄録

Estimation of driving behaviors is an elemental technology in a driving support system for a vehicle. For realizing intelligent estimation of driver behaviors, many studies have explored the use of machine learning methods mainly in a supervised fashion that require a large amount of labeled driving data. In this study, we hypothesize that the time-contrastive learning (TCL) could be helpful for reducing the number of labeled data for the supervised learning and numerically tested it using a public data set. For this purpose, we constructed three models to estimate driving behaviors from vehicle dynamics: 1) a naive linear classifier implemented by linear discriminant analysis (LDA) model; 2) an LDA classifier combined with a feature extraction process by the original TCL; 3) the same as 2) except the robust version of TCL was employed instead of the original TCL. The results were not supportive to our hypothesis: Model 1) showed better performance than the other models when very few labeled data was available; and two models with TCL outperformed the other without TCL for a considerable number of labeled data. We conclude discussions on some limitations of this study and open issues for the future.

本文言語英語
ホスト出版物のタイトル2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2021 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1363-1366
ページ数4
ISBN(電子版)9789881476890
出版ステータス出版済み - 2021
外部発表はい
イベント2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2021 - Tokyo, 日本
継続期間: 14-12-202117-12-2021

出版物シリーズ

名前2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2021 - Proceedings

会議

会議2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2021
国/地域日本
CityTokyo
Period14-12-2117-12-21

All Science Journal Classification (ASJC) codes

  • 人工知能
  • コンピュータ ビジョンおよびパターン認識
  • 信号処理
  • 器械工学

フィンガープリント

「Semi-Supervised Estimation of Driving Behaviors Using Robust Time-Contrastive Learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル