Sphingosine kinase 1/S1P pathway involvement in the GDNF-induced GAP43 transcription

Masashi Murakami, Hiromi Ito, Kazumi Hagiwara, Misa Kobayashi, Asuka Hoshikawa, Akira Takagi, Tetsuhito Kojima, Keiko Tamiya-Koizumi, Sayaka Sobue, Masatoshi Ichihara, Motoshi Suzuki, Yoshiko Banno, Yoshinori Nozawa, Takashi Murate

研究成果: Article

14 引用 (Scopus)


Glial cell line-derived neurotrophic factor (GDNF) is important for the development and maintenance of dopamine neurons (Lin et al. [1993] Science 260: 1130-1132). GDNF is neuroprotective in animal models of Parkinson disease, where dopamine neurons show selective degeneration. We previously reported GDNF-induced SPHK1 gene expression in a neuroblastoma cell line, TGW (Murakami et al. [2007] J Neurochem 102: 1585-1594). In the present study, we focused on the regulatory mechanism of GAP43 (GDNF-induced neuronal phenotype) transcription to further elucidate physiological roles of GDNF-induced SPHK1 expression and activity. Stable wild-type (SPHK1-WT) but not dominant-negative SPHK1 (SPHK1-DN) overexpression increased both control- and GDNF-induced GAP43 expression. SPHK1-WT cells showed enhanced GDNF-induced sphingosine 1-phosphate (S1P) secretion compared with mock- and SPHK1-DN cells. Exogenous S1P also increased GAP43 expression. In TGW cells, PD98059, a MEK inhibitor, but not SB203580 (a p38 MAPK inhibitor) and LY294002 (a PI3K inhibitor) inhibited GDNF-induced GAP43 expression, suggesting the MEK/ERK pathway has a major role in GDNF-induced GAP43 transcription. A G-protein-coupled receptor inhibitor, pertussis toxin, and S1P 1 and S1P 3 receptor antagonists (VPC23019 and CAY10444) also inhibited ERK activation. Moreover, both S1P1 and S1P3 were serine-phosphorylated by GDNF, suggesting their activated states. C/EBPβ transcription factor was induced by GDNF, and DNA pull-down and chromatin immunoprecipitation assays revealed the C/EBP binding site between -131 bp and -98 bp from the first exon of GAP43. Taken together, our results showed that in TGW cells, GDNF increased SPHK1 transcription, leading to the production and secretion of S1P. Through MEK/ERK pathway, S1P stimulates GAP43 transcription with increased binding of C/EBPβ to the 5′-promoter.

ジャーナルJournal of Cellular Biochemistry
出版物ステータスPublished - 11-2011

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

フィンガープリント Sphingosine kinase 1/S1P pathway involvement in the GDNF-induced GAP43 transcription' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Murakami, M., Ito, H., Hagiwara, K., Kobayashi, M., Hoshikawa, A., Takagi, A., Kojima, T., Tamiya-Koizumi, K., Sobue, S., Ichihara, M., Suzuki, M., Banno, Y., Nozawa, Y., & Murate, T. (2011). Sphingosine kinase 1/S1P pathway involvement in the GDNF-induced GAP43 transcription. Journal of Cellular Biochemistry, 112(11), 3449-3458. https://doi.org/10.1002/jcb.23275