Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in mdx mice

Masashi Nakatani, Yuka Takehara, Hiromu Sugino, Mitsuru Matsumoto, Osamu Hashimoto, Yoshihisa Hasegawa, Tatsuya Murakami, Akiyoshi Uezumi, Shin'ichi Takeda, Sumihare Noji, Yoshihide Sunada, Kunihiro Tsuchida

研究成果: Article査読

154 被引用数 (Scopus)

抄録

Myostatin is a potent negative regulator of skeletal muscle growth. Therefore, myostatin inhibition offers a novel therapeutic strategy for muscular dystrophy by restoring skeletal muscle mass and suppressing the progression of muscle degeneration. The known myostatin inhibitors include myostatin propeptide, follistatin, follistatin-related proteins, and myostatin antibodies. Although follistatin shows potent myostatin-inhibiting activities, it also acts as an efficient inhibitor of activins. Because activins are involved in multiple functions in various organs, their blockade by follistatin would affect multiple tissues other than skeletal muscles. In the present study, we report the characterization of a myostatin inhibitor derived from follistatin, which does not affect activin signaling. The dissociation constants (Kd) of follistatin to activin and myostatin are 1.72 nM and 12.3 nM, respectively. By contrast, the dissociation constants (Kd) of a follistatin-derived myostatin inhibitor, designated FS I-I, to activin and myostatin are 64.3 μM and 46.8 nM, respectively. Transgenic mice expressing FS I-I, under the control of a skeletal muscle-specific promoter showed increased skeletal muscle mass and strength. Hyperplasia and hypertrophy were both observed. We crossed FS I-I transgenic mice with mdx mice, a model for Duchenne muscular dystrophy. Notably, the skeletal muscles in the mdx/FS I-I mice showed enlargement and reduced cell infiltration. Muscle strength is also recovered in the mdx/FS I-I mice. These results indicate that myostatin blockade by FS I-I has a therapeutic potential for muscular dystrophy.

本文言語English
ページ(範囲)477-487
ページ数11
ジャーナルFASEB Journal
22
2
DOI
出版ステータスPublished - 02-2008

All Science Journal Classification (ASJC) codes

  • バイオテクノロジー
  • 生化学
  • 分子生物学
  • 遺伝学

フィンガープリント

「Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in mdx mice」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル